bzoj千题计划113:bzoj1023: [SHOI2008]cactus仙人掌图
http://www.lydsy.com/JudgeOnline/problem.php?id=1023
dp[x] 表示以x为端点的最长链
子节点与x不在同一个环上,那就是两条最长半链长度
子节点与x在同一个环上,环形DP,单调队列优化
对于每一个环,深度最小的那个点 有可能会更新 上层节点,
所以 每一个环DP完之后,更新 dp[深度最小的点]
#include<cstdio>
#include<iostream>
#include<algorithm> using namespace std; #define N 500001 int front[N],nxt[N<<],to[N<<],tot=; int dfn[N],low[N],fa[N],dep[N]; int dp[N],f[N],ans; int tmp[N<<],q[N]; void read(int &x)
{
x=; char c=getchar();
while(!isdigit(c)) c=getchar();
while(isdigit(c)) { x=x*+c-''; c=getchar(); }
} void add(int u,int v)
{
to[++tot]=v; nxt[tot]=front[u]; front[u]=tot;
to[++tot]=u; nxt[tot]=front[v]; front[v]=tot;
} void circular(int x,int y)
{
int cnt=dep[y]-dep[x]+; int now=y;
while(dfn[fa[now]]>=dfn[x]) tmp[cnt--]=now,now=fa[now];
tmp[cnt]=now;
cnt=dep[y]-dep[x]+;
int nn=cnt;
for(int i=;i<=cnt;++i) tmp[++nn]=tmp[i];
int h=,t=;
for(int i=;i<=nn;++i)
{
while(h<t && i-q[h]>cnt/) h++;
if(h<t) ans=max(ans,dp[tmp[i]]+dp[tmp[q[h]]]+i-q[h]);
while(h<t && dp[tmp[i]]-i>dp[tmp[q[t-]]]-q[t-]) t--;
q[t++]=i;
}
for(int i=;i<=cnt;++i) dp[x]=max(dp[x],dp[tmp[i]]+min(i-,cnt-i+));
} void tarjan(int x,int y)
{
low[x]=dfn[x]=++tot;
for(int i=front[x];i;i=nxt[i])
{
if(i==(y^)) continue;
if(!dfn[to[i]])
{
fa[to[i]]=x;
dep[to[i]]=dep[x]+;
tarjan(to[i],i);
low[x]=min(low[x],low[to[i]]);
}
else low[x]=min(low[x],dfn[to[i]]);
if(dfn[x]<low[to[i]])
{
ans=max(ans,dp[x]+dp[to[i]]+);
dp[x]=max(dp[x],dp[to[i]]+);
}
}
for(int i=front[x];i;i=nxt[i])
{
if(i==(y^)) continue;
if(fa[to[i]]!=x && dfn[x]<dfn[to[i]]) circular(x,to[i]);
}
} int main()
{
//freopen("bzoj_1023.in","r",stdin);
//freopen("bzoj_1023.out","w",stdout);
int n,m;
read(n); read(m);
int k,x,last;
while(m--)
{
read(k); read(last);
k--;
while(k--) { read(x); add(x,last); last=x;}
}
tot=;
tarjan(,);
cout<<ans;
}
1023: [SHOI2008]cactus仙人掌图
Time Limit: 1 Sec Memory Limit: 162 MB
Submit: 2993 Solved: 1246
[Submit][Status][Discuss]
Description
如果某个无向连通图的任意一条边至多只出现在一条简单回路(simple cycle)里,我们就称这张图为仙人掌
图(cactus)。所谓简单回路就是指在图上不重复经过任何一个顶点的回路。

举例来说,上面的第一个例子是一张仙人图,而第二个不是——注意到它有三条简单回路:(4,3,2,1,6
,5,4)、(7,8,9,10,2,3,7)以及(4,3,7,8,9,10,2,1,6,5,4),而(2,3)同时出现在前两
个的简单回路里。另外,第三张图也不是仙人图,因为它并不是连通图。显然,仙人图上的每条边,或者是这张仙
人图的桥(bridge),或者在且仅在一个简单回路里,两者必居其一。定义在图上两点之间的距离为这两点之间最
短路径的距离。定义一个图的直径为这张图相距最远的两个点的距离。现在我们假定仙人图的每条边的权值都是1
,你的任务是求出给定的仙人图的直径。
Input
输入的第一行包括两个整数n和m(1≤n≤50000以及0≤m≤10000)。其中n代表顶点个数,我们约定图中的顶
点将从1到n编号。接下来一共有m行。代表m条路径。每行的开始有一个整数k(2≤k≤1000),代表在这条路径上
的顶点个数。接下来是k个1到n之间的整数,分别对应了一个顶点,相邻的顶点表示存在一条连接这两个顶点的边
。一条路径上可能通过一个顶点好几次,比如对于第一个样例,第一条路径从3经过8,又从8返回到了3,但是我们
保证所有的边都会出现在某条路径上,而且不会重复出现在两条路径上,或者在一条路径上出现两次。
Output
只需输出一个数,这个数表示仙人图的直径长度。
Sample Input
9 1 2 3 4 5 6 7 8 3
7 2 9 10 11 12 13 10
5 2 14 9 15 10 8
10 1
10 1 2 3 4 5 6 7 8 9 10
Sample Output
9
HINT
对第一个样例的说明:如图,6号点和12号点的最短路径长度为8,所以这张图的直径为8。

bzoj千题计划113:bzoj1023: [SHOI2008]cactus仙人掌图的更多相关文章
- BZOJ1023: [SHOI2008]cactus仙人掌图(仙人掌dp)
Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 3467 Solved: 1438[Submit][Status][Discuss] Descripti ...
- BZOJ1023[SHOI2008]cactus仙人掌图 【仙人掌DP】
题目 如果某个无向连通图的任意一条边至多只出现在一条简单回路(simple cycle)里,我们就称这张图为仙人掌 图(cactus).所谓简单回路就是指在图上不重复经过任何一个顶点的回路. 举例来说 ...
- BZOJ1023: [SHOI2008]cactus仙人掌图(仙人掌)
Description 如果某个无向连通图的任意一条边至多只出现在一条简单回路(simple cycle)里,我们就称这张图为仙人掌图(cactus).所谓简单回路就是指在图上不重复经过任何一个顶点的 ...
- BZOJ1023:[SHOI2008]cactus仙人掌图(圆方树,DP,单调队列)
Description 如果某个无向连通图的任意一条边至多只出现在一条简单回路(simple cycle)里,我们就称这张图为仙人掌图(cactus). 所谓简单回路就是指在图上不重复经过任何一个顶点 ...
- bzoj千题计划224:bzoj1023: [SHOI2008]cactus仙人掌图
又写了一遍,发出来做个记录 #include<cstdio> #include<algorithm> #include<iostream> using namesp ...
- bzoj千题计划175:bzoj1303: [CQOI2009]中位数图
http://www.lydsy.com/JudgeOnline/problem.php?id=1303 令c[i]表示前i个数中,比d大的数与比d小的数的差,那么如果c[l]=c[r],则[l+1, ...
- [bzoj1023][SHOI2008]cactus 仙人掌图 (动态规划)
Description 如果某个无向连通图的任意一条边至多只出现在一条简单回路(simple cycle)里,我们就称这张图为仙人图(cactus).所谓简单回路就是指在图上不重复经过任何一个顶点的回 ...
- bzoj1023: [SHOI2008]cactus仙人掌图
学习了一下圆方树. 圆方树是一种可以处理仙人掌的数据结构,具体见这里:http://immortalco.blog.uoj.ac/blog/1955 简单来讲它是这么做的:用tarjan找环,然后对每 ...
- 2018.10.29 bzoj1023: [SHOI2008]cactus仙人掌图(仙人掌+单调队列优化dp)
传送门 求仙人掌的直径. 感觉不是很难. 分点在环上面和不在环上分类讨论. 不在环上直接树形dpdpdp. 然后如果在环上讨论一波. 首先对环的祖先有贡献的只有环上dfsdfsdfs序最小的点. 对答 ...
随机推荐
- app图标icon大全
http://tool.58pic.com/tubiaobao/index.php?m=Index&a=ui&p=2 很有用,下载没用,直接右键吧.
- 机器学习-kNN
基于Peter Harrington所著<Machine Learning in Action> kNN,即k-NearestNeighbor算法,是一种最简单的分类算法,拿这个当机器学习 ...
- 8Manage:专注企业级CRM服务应用
[导读]经过过去一段时间的资本寒冬,中国的企业服务市场热度渐退,开始步入平稳的发展阶段.面对中国越来越多企业的管理需求,这片具有巨大的发展空间的市场蓝海.我们应该如何面对企业客户CRM的需求,并将其更 ...
- LCA倍增算法
LCA 算法是一个技巧性很强的算法. 十分感谢月老提供的模板. 这里我实现LCA是通过倍增,其实就是二进制优化. 任何一个数都可以有2的阶数实现 例如16可以由1 2 4 8组合得到 5可以由1 2 ...
- Lintcode247 Segment Tree Query II solution 题解
[题目描述] For an array, we can build a Segment Tree for it, each node stores an extra attribute count t ...
- 问题排查:The requested URL /test/index.jsp was not found on this server
问题描述 添加一个新模块,部署在服务器上.服务器上还部署有其他模块且访问正常,新模块和其他模块共用同一个域名.服务部署之后,请求如下: http://my.domain.com/test/index. ...
- Mybatis+Mysql插入数据库返回自增主键id值的三种方法
一.场景: 插入数据库的值需要立即得到返回的主键id进行下一步程序操作 二.解决方法: 第一种:使用通用mapper的插入方法 Mapper.insertSelective(record): 此方法: ...
- 关于 Touchjs 手势识别事件库 this 关键字与选择器不对称情况
Touchjs 版本 v0.2.14 废话不多,直接看代码,一个拖动实例 <div id="touch-drag"></div> <script ty ...
- Unity的常用API
1.Event Function:事件函数 Reset() :被附加脚本时.在游戏物体的组件上按Reset时会触发该事件函数 Start() :在游戏初始化时会执行一次 Update() :每一帧 ...
- 1-2 hibernate主配置文件hibernate.cfg.xml详解
详 http://www.cnblogs.com/biehongli/p/6531575.html Hibernate的主配置文件hibernate.cfg.xml 1:Hibernate的主配置文件 ...