此题为蓝桥杯基础练习题。
问题描述
  给定一个n*n的棋盘,棋盘中有一些位置不能放皇后。现在要向棋盘中放入n个黑皇后和n个白皇后,使任意的两个黑皇后都不在同一行、同一列或同一条对角线上,任意的两个白皇后都不在同一行、同一列或同一条对角线上。问总共有多少种放法?n小于等于8。
输入格式
  输入的第一行为一个整数n,表示棋盘的大小。
  接下来n行,每行n个0或1的整数,如果一个整数为1,表示对应的位置可以放皇后,如果一个整数为0,表示对应的位置不可以放皇后。
输出格式
  输出一个整数,表示总共有多少种放法。
样例输入
4
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
样例输出
2
样例输入
4
1 0 1 1
1 1 1 1
1 1 1 1
1 1 1 1
样例输出
0
 
此算法使用回溯算法,如下:
 import java.util.Scanner;
public class Main {
static int n,count=0;
static int map[][];
public static void main(String args[])
{
Scanner cn=new Scanner(System.in);
n=cn.nextInt();
map=new int[n][n];
for(int i=0;i<n;i++)
for(int j=0;j<n;j++)
map[i][j]=cn.nextInt();
Put(0,2); //假设黑皇后为2 白皇后为3 放了皇后的地方就用2,3表示 ,0表示第0行
System.out.println(count);
}
/**
*
* @param t 开始放的下标
* @param s 皇后的类型
*/
public static void Put(int t,int s)
{
//放完某种类型的皇后了
if(t==n)
{
if(s==2)Put(0,3); //表示之前放的是黑皇后,现在开始放白皇后
else count++; //因为这会第n个已经放完了,所以方法数量加1
return ; //此时白皇后也放完了 ,就返回
}
for(int i=0;i<n;i++)
{ if(map[t][i]!=1)continue; //此处已被不能放皇后或放过皇后则跳出本次循环
if(Check(t,i,s))map[t][i]=s; //当前遍历后发现位置合适,就把皇后放当前位置
else continue; //不合适跳过本次循环,查找当前行下一个位置
Put(t+1,s); //此位置放完一个皇后还要去放下一个皇后
map[t][i]=1; //回溯法的关键,假设这个位置不放皇后,把皇后放在别的位置
}
return ;
}
/**
*
* @param t 当前行
* @param i 当前列
* @param s 皇后的类型
* @return
*/
public static boolean Check(int t,int i,int s)
{
for(int q=t-1;q>=0;q--)
{
//当前列上有同类皇后,就返回false
if(map[q][i]==s)return false;
}
for(int q=t-1,w=i-1;q>=0&&w>=0;q--,w--)
{
//检查主对角线向上方向(前几行)是否处于同类皇后在对角线上
if(map[q][w]==s)return false;
}
for(int q=t-1,w=i+1;q>=0&&w<=n-1;q--,w++)
{
//检查副对角线向上方向(前几行)是否处于同类皇后在对角线上
if(map[q][w]==s)return false;
}
return true;
}
}

2n皇后问题的更多相关文章

  1. n皇后问题与2n皇后问题

    n皇后问题 问题描述: 如何能够在 n×n 的棋盘上放置n个皇后,使得任何一个皇后都无法直接吃掉其他的皇后 (任两个皇后都不能处于同一条横行.纵行或斜线上) 结题思路: 可采用深度优先算法,将棋盘看成 ...

  2. 对八皇后的补充以及自己解决2n皇后问题代码

    有了上次的八皇后的基础.这次准备解决2n皇后的问题,: //问题描述// 给定一个n*n的棋盘,棋盘中有一些位置不能放皇后.现在要向棋盘中放入n个黑皇后和n个白皇后,使任意的两个黑皇后都不在同一行./ ...

  3. 蓝桥杯 基础训练 2n皇后

    数月前做的2N皇后基本看书敲代码的,然后发现当时的代码不对,正好做到算法提高的8皇后·改,顺便把以前的代码顺带改了下,题目如下: 问题描述 给定一个n*n的棋盘,棋盘中有一些位置不能放皇后.现在要向棋 ...

  4. C语言 · 2n皇后问题

    基础练习 2n皇后问题   时间限制:1.0s   内存限制:512.0MB        锦囊1 搜索算法. 锦囊2 先搜索n皇后的解,在拼凑成2n皇后的解. 问题描述 给定一个n*n的棋盘,棋盘中 ...

  5. 蓝桥杯 基础训练 BASIC-27 2n皇后问题

    基础练习 2n皇后问题   时间限制:1.0s   内存限制:512.0MB 问题描述 给定一个n*n的棋盘,棋盘中有一些位置不能放皇后.现在要向棋盘中放入n个黑皇后和n个白皇后,使任意的两个黑皇后都 ...

  6. 蓝桥--2n皇后问题(递归)--搬运+整理+注释

    N皇后问题: #include <iostream> #include <cmath> using namespace std; int N; ];//用来存放算好的皇后位置. ...

  7. 基础训练 2n皇后问题

    2n皇后问题 #include<iostream> #include<vector> using namespace std; int cnt = 0, n; vector&l ...

  8. 计蒜课--2n皇后、n皇后的解法(一般操作hhh)

    给定一个 n*nn∗n 的棋盘,棋盘中有一些位置不能放皇后.现在要向棋盘中放入 nn 个黑皇后和 nn个白皇后,使任意的两个黑皇后都不在同一行.同一列或同一条斜线(包括正负斜线)上,任意的两个白皇后都 ...

  9. 2n皇后 - 回溯

    题目地址:http://www.51cpc.com/web/problem.php?id=1172 Summarize: 1. 递归回溯: 2. 先扫完一种皇后,再扫描另一种: 3. 循环输入: 4. ...

  10. 蓝桥杯 2n皇后问题 深搜

    默认大家会了n皇后问题 基础练习 2n皇后问题   时间限制:1.0s   内存限制:512.0MB     问题描述 给定一个n*n的棋盘,棋盘中有一些位置不能放皇后.现在要向棋盘中放入n个黑皇后和 ...

随机推荐

  1. 更改dede网站地图模板样式

    dedecms后台可以生成2个地图,一个是网站地图,html格式的,一个是rss地图,同样默认这2个地图生成之后也会有底部的dedecms版权声明,这个时候我们需要分别更改这2个模板才可以去掉底部的版 ...

  2. 基于Redis的分布式锁的简单实现

    Redis官方给出两种思路 第一种:SET key value [EX seconds] [PX milliseconds] NX 第二种:SETNX+GETSET 首先,分别看一下这几个命令 SET ...

  3. Vue.js的坑

    参考网址:http://cn.vuejs.org/v2/guide/components.html 1.camelCase vs. kebab-case HTML 特性不区分大小写.当使用非字符串模版 ...

  4. 图像插值:OpenCV_remap

    此为opencv中remap函数移植和分析,整理了双线性的插值部分的代码尚未完全移植,但最困难的部分已经完成,而恰巧在这时,发现其实现并不是那么的令我满意,于是终止,改为自己实现.考虑到以后可能会用到 ...

  5. 2017-06-29(cat tac more less head tail)

    cat 查看文件内容 cat  -A 相当于-vET的整合参数,可列出一些特殊的字符,而不是空白而已   -b 列出行号,空白行不标号   -E 将结尾的断行字符 $ 显示出来   -n 列出行号,空 ...

  6. Azure Powershell获取指定订阅下的虚拟机信息(ARM)

    为方便Azure用户导出已创建虚拟机的相关信息,特编写如下脚本: 详情脚本: # 登陆Azure Account Add-AzureRmAccount -EnvironmentName AzureCh ...

  7. python_鸡兔同笼问题

    鸡兔同笼问题 -- 今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何? --鸡和兔在一个笼子里,从上面数,有35个头:从下面数,有94只脚.问笼中各有几只鸡和兔 如何逻辑整理? -- 鸡头和兔子 ...

  8. 理解JS中的call、apply、bind方法(*****************************************************************)

    在JavaScript中,call.apply和bind是Function对象自带的三个方法,这三个方法的主要作用是改变函数中的this指向. call.apply.bind方法的共同点和区别:app ...

  9. Android自定义View的套路

    一.自定义View的流程 1.属性设置 在styles.xml中设置控件属性,如果你想直接harcode可以忽略这步 <!--name为声明的"属性集合"名,可以随便取,但是 ...

  10. awk运用

    awk编程: 1. 变量: 在awk中变量无须定义即可使用,变量在赋值时即已经完成了定义.变量的类型可以是数字.字符串.根据使用的不同,未初始化变量的值为0或空白字符串" ",这主 ...