本笔记源于CDA-DSC课程,由常国珍老师主讲。该训练营第一期为风控主题,培训内容十分紧凑,非常好,推荐:CDA数据科学家训练营

欺诈一般不用什么深入的模型进行拟合,比较看重分析员对业务的了解,从异常值就可以观测出欺诈行为轨迹。同时欺诈较多看重分类模型的召回与准确率两个指标。较多使用SVM来进行建模。

召回率,准确率,排序很准的模型排行:

1、SVM

2、随机森林、决策树

其中SVM可以像逻辑回归做概率,但是这个概率是点到超平面之间的距离与最长距离之比。概率原理不是特别直接有效,而且解释力度不强。

——笔记︱金融风险之欺诈分类以及银行防控体系简述

一、SVM线性可分与不可分

1、线性可分与不可分

线性可分指的就是直线(如左图),用了一条直线来进行划分,实心圆与空心圆,用直线来分类;不可分就是曲线分类,准确性比较高。大部分情况都是线性不可分

2、不可分情况

不可分的情况有两种处理方式:

(1)容错的话,直接用线性,设置容错个数,错了就错了

(2)不容错,做惩罚函数,做多项式转化,变为线性的问题

如果惩罚过多,会造成过拟合的问题,泛化能力不足

二、核函数

SVM的核函数与神经网络的激活函数一致,不同的场景会用到不同的核函数。

其中RBF函数(高斯核函数),较多应用在异常值处理。

笔记︱支持向量机SVM在金融风险欺诈中应用简述的更多相关文章

  1. 转:机器学习中的算法(2)-支持向量机(SVM)基础

    机器学习中的算法(2)-支持向量机(SVM)基础 转:http://www.cnblogs.com/LeftNotEasy/archive/2011/05/02/basic-of-svm.html 版 ...

  2. 机器学习:Python中如何使用支持向量机(SVM)算法

    (简单介绍一下支持向量机,详细介绍尤其是算法过程可以查阅其他资) 在机器学习领域,支持向量机SVM(Support Vector Machine)是一个有监督的学习模型,通常用来进行模式识别.分类(异 ...

  3. Python中的支持向量机SVM的使用(有实例)

    除了在Matlab中使用PRTools工具箱中的svm算法,Python中一样可以使用支持向量机做分类.因为Python中的sklearn也集成了SVM算法. 一.简要介绍一下sklearn Scik ...

  4. OpenCV 学习笔记 07 支持向量机SVM(flag)

    1 SVM 基本概念 本章节主要从文字层面来概括性理解 SVM. 支持向量机(support vector machine,简SVM)是二类分类模型. 在机器学习中,它在分类与回归分析中分析数据的监督 ...

  5. 机器学习笔记:支持向量机(svm)

    支持向量机(svm)英文为Support Vector Machines 第一次接触支持向量机是2017年在一个在线解密游戏"哈密顿行动"中的一个关卡的二分类问题,用到了台湾教授写 ...

  6. Python3中的支持向量机SVM的使用(有实例)

    https://www.cnblogs.com/luyaoblog/p/6775342.html 首先,我们需要安装scikit-learn 一.导入sklearn算法包  在python中导入sci ...

  7. Python机器学习笔记:SVM(1)——SVM概述

    前言 整理SVM(support vector machine)的笔记是一个非常麻烦的事情,一方面这个东西本来就不好理解,要深入学习需要花费大量的时间和精力,另一方面我本身也是个初学者,整理起来难免思 ...

  8. 【IUML】支持向量机SVM

    从1995年Vapnik等人提出一种机器学习的新方法支持向量机(SVM)之后,支持向量机成为继人工神经网络之后又一研究热点,国内外研究都很多.支持向量机方法是建立在统计学习理论的VC维理论和结构风险最 ...

  9. 以图像分割为例浅谈支持向量机(SVM)

    1. 什么是支持向量机?   在机器学习中,分类问题是一种非常常见也非常重要的问题.常见的分类方法有决策树.聚类方法.贝叶斯分类等等.举一个常见的分类的例子.如下图1所示,在平面直角坐标系中,有一些点 ...

随机推荐

  1. ATS 分级缓存

    理解缓存分级cache hierarchies 缓存分级是由彼此能够相互通信的各级缓存组成的,ATS支持几种类型的缓存分级.所有的缓存分级都有父子缓存概念. 父缓存位于缓存分级的较高级别,ATS能将请 ...

  2. 【原创】@ResponseBody返回json数据时出现中文乱码

    ι 版权声明:本文为博主原创文章,未经博主允许不得转载. 原因: Spring中解析字符串的转换器默认编码格式是ISO-8859-1 public class StringHttpMessageCon ...

  3. 基于SpringMVC+Mybatis搭建简单的前后台交互系统

    前面博文有一篇 名为基于tomcat+springMVC搭建基本的前后台交互系统(http://www.cnblogs.com/hunterCecil/p/6924935.html),例文中使用了Io ...

  4. python学习--Linux下dlib安装(主要是cmake和boost的安装)

    昨天我们使用了dlib和opencv进行了人脸检测标注(http://www.cnblogs.com/take-fetter/p/8310298.html) 但是运行环境是基于windows的而且可能 ...

  5. js事件机制

    js事件属性:

  6. Golang Linux Shell编程(一)

    1.调用系统命令 exec包执行外部命令,它将os.StartProcess进行包装使得它更容易映射到stdin和stdout,并且利用pipe连接i/o func Command(name stri ...

  7. Python tutorial阅读之函数的定义与使用

    函数的定义 Python 使用关键字def定义函数,格式与C语言类似,但是没有返回类型,参数也不需要设置类型. def add(a, b): """这是函数的文档字符串& ...

  8. 当inline元素包裹block元素时会发生什么

    经常有图片链接写法如下: <a href="www.baidu.com"><img src="baidu.jpg" /></a&g ...

  9. Dockerfile 中的 CMD 与 ENTRYPOINT

    CMD 和 ENTRYPOINT 指令都是用来指定容器启动时运行的命令.单从功能上来看,这两个命令几乎是重复的.单独使用其中的一个就可以实现绝大多数的用例.但是既然 doker 同时提供了它们,为了在 ...

  10. 4、flask之分页插件的使用、添加后保留原url搜索条件、单例模式

    本篇导航: flask实现分页 添加后保留原url搜索条件 单例模式 一.flask实现分页 1.django项目中写过的分页组件 from urllib.parse import urlencode ...