BZOJ_2956_模积和_数学

Description

 求∑∑((n mod i)*(m mod j))其中1<=i<=n,1<=j<=m,i≠j。

  

Input

第一行两个数n,m。

Output

  一个整数表示答案mod 19940417的值

Sample Input

3 4

Sample Output

1

样例说明
  答案为(3 mod 1)*(4 mod 2)+(3 mod 1) * (4 mod 3)+(3 mod 1) * (4 mod 4) + (3 mod 2) * (4 mod 1) + (3 mod 2) * (4 mod 3) + (3 mod 2) * (4 mod 4) + (3 mod 3) * (4 mod 1) + (3 mod 3) * (4 mod 2) + (3 mod 3) * (4 mod 4) = 1

数据规模和约定
  对于100%的数据n,m<=10^9。


分析:

$$\sum_{i=1}^{n}\sum_{j=1}^{m}(n-i*\lfloor n/i\rfloor)*(m-j*\lfloor m/j\rfloor)
-\sum_{i=1}^{n}(n\;mod\;i)*(m\;mod\;i)=$$
$$(\sum_{i=1}^{n}n-i*\lfloor n/i\rfloor\;)*(\sum_{i=1}^{m}m-i*\lfloor m/i\rfloor)-$$
$$\sum_{i=1}^{n}(n*m-i*\lfloor n/i\rfloor*m-i*\lfloor m/i\rfloor*n+
i*\lfloor n/i\rfloor*i*\lfloor m/i\rfloor)=$$
$$(n^{2}-\sum_{i=1}^{n}i*\lfloor n/i\rfloor)
*(m^{2}-\sum_{i=1}^{m}i*\lfloor m/i\rfloor)-$$
$$\sum_{i=1}^{n}(n*m-i*\lfloor n/i\rfloor*m-i*\lfloor m/i\rfloor*n+
i*\lfloor n/i\rfloor*i*\lfloor m/i\rfloor)$$
两边都能在$\sqrt n$的时间内算出

代码:

#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;
typedef long long ll;
ll mod=19940417*6;
ll sum1(ll x) {
return (x+1)*x%mod/2;
}
ll sum2(ll x) {
return x*(x+1)%mod*(2*x+1)%mod/6;
}
ll calc1(ll n) {
int i,lst;
ll ans=n*n%mod;
for(i=1;i<=n;i=lst+1) {
lst=(n/(n/i));
ans=(ans-(n/i)*(sum1(lst)-sum1(i-1)+mod)%mod+mod)%mod;
}
return ans;
}
ll calc2(ll n,ll m) {
int i,lst;
ll ans=n*m%mod,r=min(n,m);
ans=ans*r%mod;
for(i=1;i<=r;i=lst+1) {
lst=min(n/(n/i),m/(m/i));
ll del=(sum1(lst)-sum1(i-1)+mod)%mod;
ans=(ans-m*(n/i)%mod*del%mod-n*(m/i)%mod*del%mod+(n/i)*(m/i)%mod*(sum2(lst)-sum2(i-1)+mod)%mod)%mod;
}
return ans;
}
int main() {
ll n,m;
scanf("%lld%lld",&n,&m);
printf("%lld\n",(calc1(n)*calc1(m)%mod-calc2(n,m)+mod)%(mod/6));
}

BZOJ_2956_模积和_数学的更多相关文章

  1. BZOJ_2467_[中山市选2010]生成树_数学

    BZOJ_2467_[中山市选2010]生成树_数学 [Submit][Status][Discuss] Description 有一种图形叫做五角形圈.一个五角形圈的中心有1个由n个顶点和n条边组成 ...

  2. BZOJ_2721_[Violet 5]樱花_数学

    BZOJ_2721_[Violet 5]樱花_数学 Description Input Output $\frac{1}{x}+\frac{1}{y}=\frac{1}{m}$ $xm+ym=xy$ ...

  3. P2260 [清华集训2012]模积和

    P2260 [清华集训2012]模积和 整除分块+逆元 详细题解移步P2260题解板块 式子可以拆开分别求解,具体见题解 这里主要讲的是整除分块(数论分块)和mod不为素数时如何求逆元 整除分块:求Σ ...

  4. 【BZOJ】2956:模积和

    Time Limit: 10 Sec  Memory Limit: 128 MB Description 求∑∑((n mod i)*(m mod j))其中1<=i<=n,1<=j ...

  5. 【BZOJ2956】模积和 分块

    [BZOJ2956]模积和 Description 求∑∑((n mod i)*(m mod j))其中1<=i<=n,1<=j<=m,i≠j. Input 第一行两个数n,m ...

  6. UOJ_21_【UR #1】缩进优化_数学

    UOJ_21_[UR #1]缩进优化_数学 题面:http://uoj.ac/problem/21 最小化$\sum\limits{i=1}^{n}a[i]/x+a[i]\;mod\;x$ =$\su ...

  7. BZOJ_4459_[Jsoi2013]丢番图_数学+分解质因数

    BZOJ_4459_[Jsoi2013]丢番图_数学+分解质因数 Description 丢番图是亚历山大时期埃及著名的数学家.他是最早研究整数系数不定方程的数学家之一. 为了纪念他,这些方程一般被称 ...

  8. P2260 [清华集训2012]模积和 【整除分块】

    一.题目 P2260 [清华集训2012]模积和 二.分析 参考文章:click here 具体的公式推导可以看参考文章.博主的证明很详细. 自己在写的时候问题不在公式推导,公式还是能够比较顺利的推导 ...

  9. 「BZOJ 2956」模积和

    「BZOJ 2956」模积和 令 \(l=\min(n,m)\).这个 \(i\neq j\) 非常不优雅,所以我们考虑分开计算,即: \[\begin{aligned} &\sum_{i=1 ...

随机推荐

  1. vue学习:props,scope,slot,ref,is,slot,sync等知识点

    1.ref :为子组件指定一个索引 ID,给元素或者组件注册引用信息.refs是一个对象,包含所有的ref组件. <div id="parent"> <user- ...

  2. javascript初学者必须注意的7个细节

    [IT168 技术]每种语言都有它特别的地方,对于JavaScript来说,使用var就可以声明任意类型的变量,这门脚本语言看起来很简单,然而想要写出优雅的代码却是需要不断积累经验的.本文列举Java ...

  3. 用python开发调试器——起始篇

    首先,你得准备一套python开发环境,正常情况下,一般是在windows下开发的,因为win系统应用广泛,再则就是要有个IDE,这里我选择我熟悉的Eclipse.环境搭建,网上都有,比如:http: ...

  4. Spring消息之STOMP

    一.STOMP 简介 直接使用WebSocket(或SockJS)就很类似于使用TCP套接字来编写Web应用.因为没有高层级的线路协议(wire protocol),因此就需要我们定义应用之间所发送消 ...

  5. Android开发之深入理解Android 7.0系统权限更改相关文档

    http://www.cnblogs.com/dazhao/p/6547811.html 摘要: Android 6.0之后的版本增加了运行时权限,应用程序在执行每个需要系统权限的功能时,需要添加权限 ...

  6. HTML学习笔记:1.基础概念

    ①HTML:Hypertext Markup Language,即超文本标记语言,文件由标记组成   ②HTML发展史 (几个重要节点): 1993(IETF):HTML 1.0 1995(W3C): ...

  7. 在C++98基础上学习C++11新特性

    自己一直用的是C++98规范来编程,对于C++11只闻其名却没用过其特性.近期因为工作的需要,需要掌握C++11的一些特性,所以查阅了一些C++11资料.因为自己有C++98的基础,所以从C++98过 ...

  8. 【定时器】Quartz初步实验

    第一步:创建项目 创建一个新项目,可以是ASP.NET MVC,WebForms,Winforms等多种.Net项目,这里使用的是VS2017,创建了一个MVC项目 创建完成后大致项目层级为: 第二部 ...

  9. python_形参何时影响实参

    §对于绝大多数情况下,在函数内部直接修改形参的值不会影响实参.例如: >>> def addOne(a): print(a) a += 1 print(a) >>> ...

  10. mac的terminal快捷键

    mac终端terminal快捷键: Command + K 清屏 Command + T 新建标签 Command +W  关闭当前标签页 Command + S  保存终端输出 Command + ...