BZOJ_2956_模积和_数学
BZOJ_2956_模积和_数学
Description
Input
第一行两个数n,m。
Output
一个整数表示答案mod 19940417的值
Sample Input
Sample Output
1
样例说明
答案为(3 mod 1)*(4 mod 2)+(3 mod 1) * (4 mod 3)+(3 mod 1) * (4 mod 4) + (3 mod 2) * (4 mod 1) + (3 mod 2) * (4 mod 3) + (3 mod 2) * (4 mod 4) + (3 mod 3) * (4 mod 1) + (3 mod 3) * (4 mod 2) + (3 mod 3) * (4 mod 4) = 1
数据规模和约定
对于100%的数据n,m<=10^9。
分析:
$$\sum_{i=1}^{n}\sum_{j=1}^{m}(n-i*\lfloor n/i\rfloor)*(m-j*\lfloor m/j\rfloor)
-\sum_{i=1}^{n}(n\;mod\;i)*(m\;mod\;i)=$$
$$(\sum_{i=1}^{n}n-i*\lfloor n/i\rfloor\;)*(\sum_{i=1}^{m}m-i*\lfloor m/i\rfloor)-$$
$$\sum_{i=1}^{n}(n*m-i*\lfloor n/i\rfloor*m-i*\lfloor m/i\rfloor*n+
i*\lfloor n/i\rfloor*i*\lfloor m/i\rfloor)=$$
$$(n^{2}-\sum_{i=1}^{n}i*\lfloor n/i\rfloor)
*(m^{2}-\sum_{i=1}^{m}i*\lfloor m/i\rfloor)-$$
$$\sum_{i=1}^{n}(n*m-i*\lfloor n/i\rfloor*m-i*\lfloor m/i\rfloor*n+
i*\lfloor n/i\rfloor*i*\lfloor m/i\rfloor)$$
两边都能在$\sqrt n$的时间内算出
代码:
#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;
typedef long long ll;
ll mod=19940417*6;
ll sum1(ll x) {
return (x+1)*x%mod/2;
}
ll sum2(ll x) {
return x*(x+1)%mod*(2*x+1)%mod/6;
}
ll calc1(ll n) {
int i,lst;
ll ans=n*n%mod;
for(i=1;i<=n;i=lst+1) {
lst=(n/(n/i));
ans=(ans-(n/i)*(sum1(lst)-sum1(i-1)+mod)%mod+mod)%mod;
}
return ans;
}
ll calc2(ll n,ll m) {
int i,lst;
ll ans=n*m%mod,r=min(n,m);
ans=ans*r%mod;
for(i=1;i<=r;i=lst+1) {
lst=min(n/(n/i),m/(m/i));
ll del=(sum1(lst)-sum1(i-1)+mod)%mod;
ans=(ans-m*(n/i)%mod*del%mod-n*(m/i)%mod*del%mod+(n/i)*(m/i)%mod*(sum2(lst)-sum2(i-1)+mod)%mod)%mod;
}
return ans;
}
int main() {
ll n,m;
scanf("%lld%lld",&n,&m);
printf("%lld\n",(calc1(n)*calc1(m)%mod-calc2(n,m)+mod)%(mod/6));
}

BZOJ_2956_模积和_数学的更多相关文章
- BZOJ_2467_[中山市选2010]生成树_数学
BZOJ_2467_[中山市选2010]生成树_数学 [Submit][Status][Discuss] Description 有一种图形叫做五角形圈.一个五角形圈的中心有1个由n个顶点和n条边组成 ...
- BZOJ_2721_[Violet 5]樱花_数学
BZOJ_2721_[Violet 5]樱花_数学 Description Input Output $\frac{1}{x}+\frac{1}{y}=\frac{1}{m}$ $xm+ym=xy$ ...
- P2260 [清华集训2012]模积和
P2260 [清华集训2012]模积和 整除分块+逆元 详细题解移步P2260题解板块 式子可以拆开分别求解,具体见题解 这里主要讲的是整除分块(数论分块)和mod不为素数时如何求逆元 整除分块:求Σ ...
- 【BZOJ】2956:模积和
Time Limit: 10 Sec Memory Limit: 128 MB Description 求∑∑((n mod i)*(m mod j))其中1<=i<=n,1<=j ...
- 【BZOJ2956】模积和 分块
[BZOJ2956]模积和 Description 求∑∑((n mod i)*(m mod j))其中1<=i<=n,1<=j<=m,i≠j. Input 第一行两个数n,m ...
- UOJ_21_【UR #1】缩进优化_数学
UOJ_21_[UR #1]缩进优化_数学 题面:http://uoj.ac/problem/21 最小化$\sum\limits{i=1}^{n}a[i]/x+a[i]\;mod\;x$ =$\su ...
- BZOJ_4459_[Jsoi2013]丢番图_数学+分解质因数
BZOJ_4459_[Jsoi2013]丢番图_数学+分解质因数 Description 丢番图是亚历山大时期埃及著名的数学家.他是最早研究整数系数不定方程的数学家之一. 为了纪念他,这些方程一般被称 ...
- P2260 [清华集训2012]模积和 【整除分块】
一.题目 P2260 [清华集训2012]模积和 二.分析 参考文章:click here 具体的公式推导可以看参考文章.博主的证明很详细. 自己在写的时候问题不在公式推导,公式还是能够比较顺利的推导 ...
- 「BZOJ 2956」模积和
「BZOJ 2956」模积和 令 \(l=\min(n,m)\).这个 \(i\neq j\) 非常不优雅,所以我们考虑分开计算,即: \[\begin{aligned} &\sum_{i=1 ...
随机推荐
- 有关Java 锁原理
锁 锁是用来锁东西的,让别人打不开也看不到!在线程中,用这个“锁”隐喻来说明一个线程在“操作”一个目标(如一个变量)的时候,如果变量是被锁住的,那么其他线程就对这个目标既“操作”不了(挂起)也无法看到 ...
- LindDotNetCore~框架介绍及特色功能(有点springboot的意思)
LindDotNetCore模块介绍 大叔博客 LindDotNetCore相关模块介绍 [x] 全局都是依赖DI [x] 消息队列 [x] NoSql [x] Caching [x] 仓储 [x] ...
- C++内存分区
C++的内存划分为栈区.堆区.全局区/静态区.字符串常量和代码区. 这里去掉自由存储区,增加了代码区,理由会在下面讲到. 栈区:由系统进行内存的管理. 说明:主要存放函数的参数以及局部变量.栈区由系统 ...
- 视频客观质量评价工具:MSU Video Quality Measurement Tool【ssim,psnr】
MSU Video Quality Measurement Tool(msu vqmt)是莫斯科国立大学(Moscow State University)的Graphics and Media Lab ...
- 完整的WebRTC调用序列图
说在前面的话:此图出自Rea-Time Communication with WebRTC: https://book.douban.com/subject/25849712/ 的第五章.
- C#语言中的XmlSerializer类的XmlSerializer.Deserialize (Stream)方法举例详解
包含由指定的 XML 文档反序列化 Stream. 命名空间: System.Xml.Serialization程序集: System.Xml(位于 System.Xml.dll) 注意: 反序 ...
- Naive RNN vs LSTM vs GRU
0 Recurrent Neural Network 1 Naive RNN 2 LSTM peephole Naive RNN vs LSTM 记忆更新部分的操作,Naive RNN为乘法,LSTM ...
- 让 Homebrew 走代理更新 + brew 管理 node 版本
0.前言 环境:MacOS 背景:整理下今天所做的配置. 1. 让 Homebrew 走代理更新 brew update 就卡住了,即使开了 shadowsocks 也不行.因为 shadowsock ...
- 在Linux上安装Python3
1. 安装依赖环境 # yum -y install zlib-devel bzip2-devel openssl-devel ncurses-devel sqlite-devel readline- ...
- jieba库分词词频统计
代码已发至github上的python文件 词频统计结果如下(词频为1的词组数量已省略): {'是': 5, '风格': 4, '擅长': 4, '的': 4, '兴趣': 4, '宣言': 4, ' ...