BZOJ_2956_模积和_数学

Description

 求∑∑((n mod i)*(m mod j))其中1<=i<=n,1<=j<=m,i≠j。

  

Input

第一行两个数n,m。

Output

  一个整数表示答案mod 19940417的值

Sample Input

3 4

Sample Output

1

样例说明
  答案为(3 mod 1)*(4 mod 2)+(3 mod 1) * (4 mod 3)+(3 mod 1) * (4 mod 4) + (3 mod 2) * (4 mod 1) + (3 mod 2) * (4 mod 3) + (3 mod 2) * (4 mod 4) + (3 mod 3) * (4 mod 1) + (3 mod 3) * (4 mod 2) + (3 mod 3) * (4 mod 4) = 1

数据规模和约定
  对于100%的数据n,m<=10^9。


分析:

$$\sum_{i=1}^{n}\sum_{j=1}^{m}(n-i*\lfloor n/i\rfloor)*(m-j*\lfloor m/j\rfloor)
-\sum_{i=1}^{n}(n\;mod\;i)*(m\;mod\;i)=$$
$$(\sum_{i=1}^{n}n-i*\lfloor n/i\rfloor\;)*(\sum_{i=1}^{m}m-i*\lfloor m/i\rfloor)-$$
$$\sum_{i=1}^{n}(n*m-i*\lfloor n/i\rfloor*m-i*\lfloor m/i\rfloor*n+
i*\lfloor n/i\rfloor*i*\lfloor m/i\rfloor)=$$
$$(n^{2}-\sum_{i=1}^{n}i*\lfloor n/i\rfloor)
*(m^{2}-\sum_{i=1}^{m}i*\lfloor m/i\rfloor)-$$
$$\sum_{i=1}^{n}(n*m-i*\lfloor n/i\rfloor*m-i*\lfloor m/i\rfloor*n+
i*\lfloor n/i\rfloor*i*\lfloor m/i\rfloor)$$
两边都能在$\sqrt n$的时间内算出

代码:

#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;
typedef long long ll;
ll mod=19940417*6;
ll sum1(ll x) {
return (x+1)*x%mod/2;
}
ll sum2(ll x) {
return x*(x+1)%mod*(2*x+1)%mod/6;
}
ll calc1(ll n) {
int i,lst;
ll ans=n*n%mod;
for(i=1;i<=n;i=lst+1) {
lst=(n/(n/i));
ans=(ans-(n/i)*(sum1(lst)-sum1(i-1)+mod)%mod+mod)%mod;
}
return ans;
}
ll calc2(ll n,ll m) {
int i,lst;
ll ans=n*m%mod,r=min(n,m);
ans=ans*r%mod;
for(i=1;i<=r;i=lst+1) {
lst=min(n/(n/i),m/(m/i));
ll del=(sum1(lst)-sum1(i-1)+mod)%mod;
ans=(ans-m*(n/i)%mod*del%mod-n*(m/i)%mod*del%mod+(n/i)*(m/i)%mod*(sum2(lst)-sum2(i-1)+mod)%mod)%mod;
}
return ans;
}
int main() {
ll n,m;
scanf("%lld%lld",&n,&m);
printf("%lld\n",(calc1(n)*calc1(m)%mod-calc2(n,m)+mod)%(mod/6));
}

BZOJ_2956_模积和_数学的更多相关文章

  1. BZOJ_2467_[中山市选2010]生成树_数学

    BZOJ_2467_[中山市选2010]生成树_数学 [Submit][Status][Discuss] Description 有一种图形叫做五角形圈.一个五角形圈的中心有1个由n个顶点和n条边组成 ...

  2. BZOJ_2721_[Violet 5]樱花_数学

    BZOJ_2721_[Violet 5]樱花_数学 Description Input Output $\frac{1}{x}+\frac{1}{y}=\frac{1}{m}$ $xm+ym=xy$ ...

  3. P2260 [清华集训2012]模积和

    P2260 [清华集训2012]模积和 整除分块+逆元 详细题解移步P2260题解板块 式子可以拆开分别求解,具体见题解 这里主要讲的是整除分块(数论分块)和mod不为素数时如何求逆元 整除分块:求Σ ...

  4. 【BZOJ】2956:模积和

    Time Limit: 10 Sec  Memory Limit: 128 MB Description 求∑∑((n mod i)*(m mod j))其中1<=i<=n,1<=j ...

  5. 【BZOJ2956】模积和 分块

    [BZOJ2956]模积和 Description 求∑∑((n mod i)*(m mod j))其中1<=i<=n,1<=j<=m,i≠j. Input 第一行两个数n,m ...

  6. UOJ_21_【UR #1】缩进优化_数学

    UOJ_21_[UR #1]缩进优化_数学 题面:http://uoj.ac/problem/21 最小化$\sum\limits{i=1}^{n}a[i]/x+a[i]\;mod\;x$ =$\su ...

  7. BZOJ_4459_[Jsoi2013]丢番图_数学+分解质因数

    BZOJ_4459_[Jsoi2013]丢番图_数学+分解质因数 Description 丢番图是亚历山大时期埃及著名的数学家.他是最早研究整数系数不定方程的数学家之一. 为了纪念他,这些方程一般被称 ...

  8. P2260 [清华集训2012]模积和 【整除分块】

    一.题目 P2260 [清华集训2012]模积和 二.分析 参考文章:click here 具体的公式推导可以看参考文章.博主的证明很详细. 自己在写的时候问题不在公式推导,公式还是能够比较顺利的推导 ...

  9. 「BZOJ 2956」模积和

    「BZOJ 2956」模积和 令 \(l=\min(n,m)\).这个 \(i\neq j\) 非常不优雅,所以我们考虑分开计算,即: \[\begin{aligned} &\sum_{i=1 ...

随机推荐

  1. cocapods 使用及问题

    一.CocoaPods的安装 (1)使用淘宝的Ruby镜像替换官方的ruby源,在终端输入命令 $ gem sources --remove https://rubygems.org/ $ gem s ...

  2. Nuget发布教程

    nuget setApiKey Your-API-Key -Source https://www.nuget.org/api/v2/package nuget spec nuget pack Monk ...

  3. 多重影分身——C#中多线程的使用三(调用方法和传参)

    对Thread: 1.使用ThreadStart static void Main(string[] args) { Thread th1=new Thread(new ThreadStart(Say ...

  4. Java反射之修改常量值

    1. 通过反射修改常量的值 package com.blueStarWei.invoke; import java.lang.reflect.Field; public class ModifyFin ...

  5. Javac的实现过程

    主要介绍Javac的实现过程及原理. 首先弄明白什么是Javac? Javac是一种编译器,将一种语言转换为另一种语言规范.编译器的作用就是将符合java语言规范的源代码转化为JVM虚拟机能够识别的字 ...

  6. Zabbix如何设置脚本告警

    设置告警脚本的路径 # vim /etc/zabbix/zabbix_server.confAlertScriptsPath=/usr/lib/zabbix/alertscripts 创建脚本 在这里 ...

  7. (转) windows下 安装 rabbitMQ 及操作常用命令

    该博客转载自:https://blog.csdn.net/gy__my/article/details/78295943 原作者:Eric Li  出处:http://www.cnblogs.com/ ...

  8. py-oauth2包使用简记

    接前两天线上项目py2升级py3的书,老廖的一个旧库snspy,他已经不维护了,用的api又比较久,不好升级,最后速度找了个OAuth库取代了它,由于时间紧张,直接在pypi上搜索了一下,找到这个支持 ...

  9. Postgresql 启动could not create listen socket for "localhost"错误的解决

    新装的postgresql在第一次启动时可能会遇到错误,日志中的记录是: could not create listen socket for "localhost" 到/etc/ ...

  10. flex 访问webservice方法及跨域问题解决

    一.flex调用webserivice代码 import mx.rpc.soap.WebService; import mx.rpc.events.FaultEvent;   import mx.rp ...