Description

HH有个一成不变的习惯,喜欢饭后百步走。所谓百步走,就是散步,就是在一定的时间 内,走过一定的距离。 但
是同时HH又是个喜欢变化的人,所以他不会立刻沿着刚刚走来的路走回。 又因为HH是个喜欢变化的人,所以他每
天走过的路径都不完全一样,他想知道他究竟有多 少种散步的方法。 现在给你学校的地图(假设每条路的长度都
是一样的都是1),问长度为t,从给定地 点A走到给定地点B共有多少条符合条件的路径

Input

第一行:五个整数N,M,t,A,B。
N表示学校里的路口的个数
M表示学校里的 路的条数
t表示HH想要散步的距离
A表示散步的出发点
B则表示散步的终点。
接下来M行
每行一组Ai,Bi,表示从路口Ai到路口Bi有一条路。
数据保证Ai != Bi,但不保证任意两个路口之间至多只有一条路相连接。 
路口编号从0到N -1。 
同一行内所有数据均由一个空格隔开,行首行尾没有多余空格。没有多余空行。 
答案模45989。
N ≤ 20,M ≤ 60,t ≤ 2^30,0 ≤ A,B

Output

一行,表示答案。

Sample Input

4 5 3 0 0
0 1
0 2
0 3
2 1
3 2

Sample Output

4

题解

我们将无向边拆成两条有向边,边点互换,就可以求出满足题意的解了。

 //It is made by Awson on 2017.10.12
#include <map>
#include <set>
#include <cmath>
#include <ctime>
#include <queue>
#include <stack>
#include <cstdio>
#include <string>
#include <vector>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm>
#define LL long long
#define Min(a, b) ((a) < (b) ? (a) : (b))
#define Max(a, b) ((a) > (b) ? (a) : (b))
#define Abs(x) ((x) < 0 ? (-(x)) : (x))
using namespace std;
const int MOD = ; int n, m, t, a, b, u, v;
int f[][];
struct tt {
int to, next;
}edge[];
int path[], top = -;
struct mat {
int a[][];
mat () {
memset(a, , sizeof(a));
}
mat (int _a[][]) {
for (int i = ; i <= top; i++)
for (int j = ; j <= top; j++)
a[i][j] = _a[i][j];
}
mat operator * (const mat &b) const{
mat ans;
for (int i = ; i <= top; i++)
for (int j = ; j <= top; j++)
for (int k = ; k <= top; k++)
(ans.a[i][j] += a[i][k]*b.a[k][j]) %= MOD;
return ans;
}
}S, T; void add(int u, int v) {
edge[++top].to = v;
edge[top].next = path[u];
path[u] = top;
}
void work() {
memset(path, -, sizeof(path));
scanf("%d%d%d%d%d", &n, &m, &t, &a, &b);
for (int i = ; i <= m; i++) {
scanf("%d%d", &u, &v);
add(u, v), add(v, u);
}
if (t == ) {
int ans = ;
for (int i = path[a]; i != -; i = edge[i].next)
ans += edge[i].to == ;
printf("%d\n", ans);
return;
}
for (int i = ; i <= top; i++)
for (int j = path[edge[i].to]; j != -; j = edge[j].next)
if (i != (j^)) f[i][j]++;
S = mat(f), T = mat(f);
t -= ;
while (t) {
if (t&) S = S*T;
t >>= ;
T = T*T;
}
int ans = ;
for (int i = path[a]; i != -; i = edge[i].next)
for (int j = path[b]; j != -; j = edge[j].next)
(ans += S.a[i][j^]) %= MOD;
printf("%d\n", ans);
}
int main() {
work();
return ;
}

[SDOI 2009]HH去散步的更多相关文章

  1. [BZOJ 1875] [SDOI 2009] HH去散步【矩阵乘法】

    题目链接:BZOJ - 1875 题目分析: 这道题如果去掉“不会立刻沿着刚刚走来的路走回”的限制,直接用邻接矩阵跑矩阵乘法就可以了.然而现在加了这个限制,建图的方式就要做一些改变.如果我们把每一条边 ...

  2. sdoi 2009 HH去散步 矩阵乘

    如果没有题里的"不会立刻沿着刚刚走来的路走回"限制,那么直接矩乘计算k步的方案数 但加了这个限制,就不能以点来矩乘了,考虑边数<=60,如果以边建邻接矩阵呢?? 先拆边,再把 ...

  3. BZOJ-1875 HH去散步 DP+矩阵乘法快速幂

    1875: [SDOI2009]HH去散步 Time Limit: 20 Sec Memory Limit: 64 MB Submit: 1196 Solved: 553 [Submit][Statu ...

  4. bzoj1875: [SDOI2009]HH去散步

    终于A了...早上按自己以前的写法一直WA.下午换了一种写法就A了qwq #include<cstdio> #include<cstring> #include<iost ...

  5. BZOJ 1875: [SDOI2009]HH去散步( dp + 矩阵快速幂 )

    把双向边拆成2条单向边, 用边来转移...然后矩阵乘法+快速幂优化 ------------------------------------------------------------------ ...

  6. BZOJ_1875_[SDOI2009]HH去散步_矩阵乘法

    BZOJ_1875_[SDOI2009]HH去散步_矩阵乘法 Description HH有个一成不变的习惯,喜欢饭后百步走.所谓百步走,就是散步,就是在一定的时间 内,走过一定的距离. 但 是同时H ...

  7. bzoj 1875: [SDOI2009]HH去散步 -- 矩阵乘法

    1875: [SDOI2009]HH去散步 Time Limit: 20 Sec  Memory Limit: 64 MB Description HH有个一成不变的习惯,喜欢饭后百步走.所谓百步走, ...

  8. BZOJ 1875 【SDOI2009】 HH去散步

    题目链接:HH去散步 如果不考虑不能走上一次走的边的话,这道题就是一个矩乘的裸题. 现在有了这个条件其实也很好做.我们平常的矩阵都是按点建的,\(A_{i,j}\)表示从第\(i\)个点走到第\(j\ ...

  9. 洛谷P2151 [SDOI2009] HH去散步 [矩阵加速]

    题目传送门 HH去散步 题目描述 HH有个一成不变的习惯,喜欢饭后百步走.所谓百步走,就是散步,就是在一定的时间 内,走过一定的距离. 但是同时HH又是个喜欢变化的人,所以他不会立刻沿着刚刚走来的路走 ...

随机推荐

  1. HIVE的常用操作(HQL)语句

    HIVE基本操作命令 创建数据库 >create database db_name; >create database if not exists db_name;//创建一个不存在的数据 ...

  2. C语言数据类型作业

    一.PTA实验作业 题目1:7-4 打印菱形图案 1. 本题PTA提交列表 2. 设计思路 1.定义m,n(用于计算空格数,输出"* "数),i,j,k(用于循环) 2.输入n,并 ...

  3. 高级软件工程2017第3次作业——结对项目:四则运算题目生成程序(基于GUI)

    Deadline:2017-10-11(周三)21:00pm (注:以下内容参考集大作业 ) 前言 想过和别人一起探索世界吗?多么希望,遇到困难时,有人能一起探讨:想要懈怠时,有人推你一把:当你专注于 ...

  4. Alpha冲刺Day10

    Alpha冲刺Day10 一:站立式会议 今日安排: 由林静完成第三方机构的用户信息管理模块 由张梨贤完成第三方机构的委托授权管理模块 由黄腾飞和周静平完成政府人员模块下风险管控子模块下的核实企业风险 ...

  5. Flask 学习 十二 用户评论

    评论在数据库中的表示 由于评论和2个模型有关系,分别是谁发了评论,以及评论了哪个文章,所以这次要更新数据库模型 models.py 创建用户评论数据库模型 class Comment(db.Model ...

  6. 阿里云API网关(17)签名算法

    网关指南: https://help.aliyun.com/document_detail/29487.html?spm=5176.doc48835.6.550.23Oqbl 网关控制台: https ...

  7. Linux知识积累(2)dirname的使用方法

    linux中的cd "$(dirname "$0")"/是什么意思呢? 分析如下: 1.$0 表示当前动行的命令名,一般用于shell 脚本中 2.dirnam ...

  8. maven入门(1-1)maven是什么?

    Maven是一个项目管理工具,它包含了 一个项目对象模型 (Project Object Model), 一组标准集合, 一个项目生命周期(Project Lifecycle), 一个依赖管理系统(D ...

  9. 判断ssh远程命令是否执行结束

    注:这是一个没什么鸟用的功能.不过也算是一种拓展. 通常在那些"一键化部署"的shell脚本中,可能需要使用ssh执行远程命令来实现一些简单的自动化,这些远程命令可能需要执行一段时 ...

  10. spring mvc跨域(post)--filter方案

    import javax.servlet.*; import javax.servlet.http.HttpServletRequest; import javax.servlet.http.Http ...