During the NBA playoffs, we always arrange the rather strong team to play with the rather weak team, like make the rank 1 team play with the rank nth team, which is a good strategy to make the contest more interesting. Now, you're given n teams, you need to output their final contest matches in the form of a string.

The n teams are given in the form of positive integers from 1 to n, which represents their initial rank. (Rank 1 is the strongest team and Rank n is the weakest team.) We'll use parentheses('(', ')') and commas(',') to represent the contest team pairing - parentheses('(' , ')') for pairing and commas(',') for partition. During the pairing process in each round, you always need to follow the strategy of making the rather strong one pair with the rather weak one.

Example 1:

Input: 2
Output: (1,2)
Explanation:
Initially, we have the team 1 and the team 2, placed like: 1,2.
Then we pair the team (1,2) together with '(', ')' and ',', which is the final answer.

Example 2:

Input: 4
Output: ((1,4),(2,3))
Explanation:
In the first round, we pair the team 1 and 4, the team 2 and 3 together, as we need to make the strong team and weak team together.
And we got (1,4),(2,3).
In the second round, the winners of (1,4) and (2,3) need to play again to generate the final winner, so you need to add the paratheses outside them.
And we got the final answer ((1,4),(2,3)).

Example 3:

Input: 8
Output: (((1,8),(4,5)),((2,7),(3,6)))
Explanation:
First round: (1,8),(2,7),(3,6),(4,5)
Second round: ((1,8),(4,5)),((2,7),(3,6))
Third round: (((1,8),(4,5)),((2,7),(3,6)))
Since the third round will generate the final winner, you need to output the answer (((1,8),(4,5)),((2,7),(3,6))).

Note:

  1. The n is in range [2, 212].
  2. We ensure that the input n can be converted into the form 2k, where k is a positive integer.

这道题讲的是NBA的季后赛对战顺序,对于一个看了十几年NBA的老粉来说,再熟悉不过了。这种对战顺序是为了避免强强之间过早对决,从而失去比赛的公平性,跟欧冠欧联那种八强就开始随机抽签匹配有本质上的区别。NBA的这种比赛机制基本弱队很难翻身,假如你是拿到最后一张季后赛门票进的,那么一上来就干联盟第一,肯定凶多吉少,很有可能就被横扫了。但是偶尔也会出现黑八的情况,但都是极其少见的,毕竟像勇士这么叼的球队毕竟不多。好了,不闲扯了,来做题吧。我们就拿NBA这种八个球队的情况来分析吧,八只球队的排名是按常规赛胜率来排的:

1 2 3 4 5 6 7 8

因为是最强和最弱来对决,其次是次强与次弱对决,以此类推可得到:

1-8  2-7  3-6  4-5

那么接下来呢,还是最强与最弱,次强与次弱这种关系:

(1-8  4-5)  (2-7  3-6)

最后胜者争夺冠军

((1-8  4-5)  (2-7  3-6))

这样一分析是不是就清楚了呢,由于n限定了是2的次方数,那么就是可以一直对半分的,比如开始有n队,第一拆分为n/2对匹配,然后再对半拆,就是n/2/2,直到拆到n为1停止,而且每次都是首与末配对,次首与次末配对,这样搞清楚了规律,代码应该就不难写了吧,参见代码如下:

解法一:

class Solution {
public:
string findContestMatch(int n) {
vector<string> v;
for (int i = ; i <= n; ++i) v.push_back(to_string(i));
while (n > ) {
for (int i = ; i < n / ; ++i) {
v[i] = "(" + v[i] + "," + v[n - i - ] + ")";
}
n /= ;
}
return v[];
}
};

下面这种方法是递归的写法,解题思路跟上面没有区别,参见代码如下:

解法二:

class Solution {
public:
string findContestMatch(int n) {
vector<string> v;
for (int i = ; i <= n; ++i) v.push_back(to_string(i));
helper(n, v);
return v[];
}
void helper(int n, vector<string>& v) {
if (n == ) return;
for (int i = ; i < n; ++i) {
v[i] = "(" + v[i] + "," + v[n - i - ] + ")";
}
helper(n / , v);
}
};

参考资料:

https://discuss.leetcode.com/topic/83454/java-10-lines/2

https://discuss.leetcode.com/topic/83457/c-java-clean-code

https://discuss.leetcode.com/topic/83460/java-recursive-solution

LeetCode All in One 题目讲解汇总(持续更新中...)

[LeetCode] Output Contest Matches 输出比赛匹配对的更多相关文章

  1. [LeetCode] 544. Output Contest Matches 输出比赛匹配对

    During the NBA playoffs, we always arrange the rather strong team to play with the rather weak team, ...

  2. LeetCode Output Contest Matches

    原题链接在这里:https://leetcode.com/problems/output-contest-matches/description/ 题目: During the NBA playoff ...

  3. 【leetcode】544. Output Contest Matches

    原题 During the NBA playoffs, we always arrange the rather strong team to play with the rather weak te ...

  4. 【LeetCode】544. Output Contest Matches 解题报告 (C++)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客:http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 遍历 日期 题目地址:https://leetcode ...

  5. LeetCode 544----Output Contest Matches

    During the NBA playoffs, we always arrange the rather strong team to play with the rather weak team, ...

  6. LeetCode Weekly Contest 24

    1, 543. Diameter of Binary Tree 维护左右子树的高度,同时更新结果,返回以该节点结束的最大长度.递归调用. /** * Definition for a binary t ...

  7. BZOJ1612: [Usaco2008 Jan]Cow Contest奶牛的比赛

    1612: [Usaco2008 Jan]Cow Contest奶牛的比赛 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 645  Solved: 433 ...

  8. Bzoj 1612: [Usaco2008 Jan]Cow Contest奶牛的比赛 传递闭包,bitset

    1612: [Usaco2008 Jan]Cow Contest奶牛的比赛 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 891  Solved: 590 ...

  9. BZOJ 1612: [Usaco2008 Jan]Cow Contest奶牛的比赛( floyd )

    对于第 i 头牛 , 假如排名比它高和低的数位 n - 1 , 那么他的 rank 便可以确定 . floyd -------------------------------------------- ...

随机推荐

  1. 获取dmp文件的schema

    白天的时候,做了一个获取dmp文件的schema实验,特此记录一下. 参考文章:如何获取dmp文件的schema  -- by 我的烟灰缸 http://oradb.cc/2017/07/10/%E5 ...

  2. 测试对bug如何分析和定位

    如何去区分一个功能测试工程师的水平高和低? 可以从很多个方面去检查,比如测试的思路, 比如测试用例的覆盖度?,比如测试出bug是否能够定位到根因? 上面说的各个方面都很合理,那我们平常如何如更深的定位 ...

  3. Jquery判断checkbox是否被选中

    jQuery中: $("input[type='checkbox']").is(':checked') 返回true或false 1.attr()方法  设置或者返回备选元素的值 ...

  4. alpha-咸鱼冲刺day2

    一,合照 emmmmm.自然是没有的. 二,项目燃尽图 三,项目进展 今天并没有什么进展,弄了好久好像也只研究出怎么把JS的功能块插入进去.html的信息提交这些还不知道要怎么弄. 四,问题困难 日常 ...

  5. 敏捷冲刺每日报告——Day1

    1.情况简述 Alpha阶段第一次Scrum Meeting 敏捷开发起止时间 2017.10.25 00:00 -- 2017.10.26 00:00 讨论时间地点 2017.10.25晚9:30, ...

  6. node.js基础

    //安装淘宝npm镜像 npm install -g cnpm --registry=https://registry.npm.taobao.org//require表示引包,引包就是引用自己的一个特 ...

  7. JavaScript简写技巧总结

    在日常工作中,JavaScript一些常用的简写技巧,将直接影响到我们的开发效率,现将常用技巧整理如下: 1. 空(null, undefined)验证     当我们创建了一个新的变量,我们通常会去 ...

  8. 05-移动端开发教程-CSS3兼容处理

    CSS3的标准并没有全部定稿,目前CSS3的标准分成了不同的模块,具体的标准由各个模块推动标准和定稿,标准制定的过程中,浏览器也在不断的发新的版本来兼容新的标准.浏览器有时会给一些在试验阶段或非标准阶 ...

  9. Mego开发文档 - 索引

    Mego 开发文档 Mego 快速概述 主要特性 获取Mego 使用流程 模型 查询 保存数据 入门 Mego 快速开始 创建项目 安装Nuget包 创建连接字符串 创建模型及数据上下文(添加引用) ...

  10. iot前台开发环境:请求示例

    参考链接:http://www.cnblogs.com/keatkeat/category/872790.html 编辑->update保存 一.typescipt import { Injec ...