【题目描述】

Say you have an array for which the th element is the price of a given stock on day i.

Design an algorithm to find the maximum profit. You may complete at most k transactions.

Notice:You may not engage in multiple transactions at the same time (i.e., you must sell the stock before you buy again).

假设你有一个数组,它的第i个元素是一支给定的股票在第i天的价格。

设计一个算法来找到最大的利润。你最多可以完成 k 笔交易。

【注】你不可以同时参与多笔交易(你必须在再次购买前出售掉之前的股票)

【题目链接】

www.lintcode.com/en/problem/best-time-to-buy-and-sell-stock-iv/

【题目解析】

下面的解法主要是能把两次的限制推广到k次交易:

这道题是Best Time to Buy and Sell Stock的扩展,现在最多可以进行两次交易。所以仍然使用动态规划来完成,事实上可以解决非常通用的情况,也就是最多进行k次交易的情况。 这里我们先解释最多可以进行k次交易的算法,然后最多进行两次我们只需要把k取成2即可。我们还是使用“局部最优和全局最优解法”。我们维护两种量,一个是当前到达第i天可以最多进行j次交易,最好的利润是多少(global[i][j]),另一个是当前到达第i天,最多可进行j次交易,并且最后一次交易在当天卖出的最好的利润是多少(local[i][j])。下面我们来看递推式,全局的比较简单,

global[i][j]=max(local[i][j],global[i-1][j]),

也就是去当前局部最好的,和过往全局最好的中大的那个(因为最后一次交易如果包含当前天一定在局部最好的里面,否则一定在过往全局最优的里面)。

全局(到达第i天进行j次交易的最大收益) = max{局部(在第i天交易后,恰好满足j次交易),全局(到达第i-1天时已经满足j次交易)}

对于局部变量的维护,递推式是

local[i][j]=max(global[i-1][j-1]+max(diff,0),local[i-1][j]+diff),

也就是看两个量,第一个是全局到i-1天进行j-1次交易,然后加上今天的交易,如果今天是赚钱的话(也就是前面只要j-1次交易,最后一次交易取当前天),第二个量则是取local第i-1天j次交易,然后加上今天的差值(这里因为local[i-1][j]比如包含第i-1天卖出的交易,所以现在变成第i天卖出,并不会增加交易次数,而且这里无论diff是不是大于0都一定要加上,因为否则就不满足local[i][j]必须在最后一天卖出的条件了)。

局部(在第i天交易后,总共交易了j次) = max{情况2,情况1}

情况1:在第i-1天时,恰好已经交易了j次(local[i-1][j]),那么如果i-1天到i天再交易一次:即在第i-1天买入,第i天卖出(diff),则这不并不会增加交易次数!【例如我在第一天买入,第二天卖出;然后第二天又买入,第三天再卖出的行为 和 第一天买入,第三天卖出 的效果是一样的,其实只进行了一次交易!因为有连续性】 情况2:第i-1天后,共交易了j-1次(global[i-1][j-1]),因此为了满足“第i天过后共进行了j次交易,且第i天必须进行交易”的条件:我们可以选择1:在第i-1天买入,然后再第i天卖出(diff),或者选择在第i天买入,然后同样在第i天卖出(收益为0)。

上面的算法中对于天数需要一次扫描,而每次要对交易次数进行递推式求解,所以时间复杂度是O(n*k),如果是最多进行两次交易,那么复杂度还是O(n)。空间上只需要维护当天数据皆可以,所以是O(k),当k=2,则是O(1)。

【参考答案】

www.jiuzhang.com/solutions/best-time-to-buy-and-sell-stock-iv/

著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

Lintcode393 Best Time to Buy and Sell Stock IV solution 题解的更多相关文章

  1. leetcode 第188题,我的解法,Best Time to Buy and Sell Stock IV

    <span style="font-family: Arial, Helvetica, sans-serif; background-color: rgb(255, 255, 255) ...

  2. 【LeetCode】Best Time to Buy and Sell Stock IV

    Best Time to Buy and Sell Stock IV Say you have an array for which the ith element is the price of a ...

  3. Leetcode之动态规划(DP)专题-188. 买卖股票的最佳时机 IV(Best Time to Buy and Sell Stock IV)

    Leetcode之动态规划(DP)专题-188. 买卖股票的最佳时机 IV(Best Time to Buy and Sell Stock IV) 股票问题: 121. 买卖股票的最佳时机 122. ...

  4. 【刷题-LeetCode】188 Best Time to Buy and Sell Stock IV

    Best Time to Buy and Sell Stock IV Say you have an array for which the i-th element is the price of ...

  5. [LeetCode] Best Time to Buy and Sell Stock IV 买卖股票的最佳时间之四

    Say you have an array for which the ith element is the price of a given stock on day i. Design an al ...

  6. Java for LeetCode 188 Best Time to Buy and Sell Stock IV【HARD】

    Say you have an array for which the ith element is the price of a given stock on day i. Design an al ...

  7. LeetCode Best Time to Buy and Sell Stock IV

    原题链接在这里:https://leetcode.com/problems/best-time-to-buy-and-sell-stock-iv/ 题目: Say you have an array ...

  8. [LeetCode][Java] Best Time to Buy and Sell Stock IV

    题目: Say you have an array for which the ith element is the price of a given stock on day i. Design a ...

  9. [LeetCode] 188. Best Time to Buy and Sell Stock IV 买卖股票的最佳时间 IV

    Say you have an array for which the ith element is the price of a given stock on day i. Design an al ...

随机推荐

  1. ELK学习总结(3-1)elk的基本查询

    基本查询:内置条件 组合查询:组合基本查询 过滤:查询同时,通过filter筛选数据 准备工作  GET /library/books/_mget { "ids":["1 ...

  2. angular-单页面应用程序

    我们都知道angularjs是单一页面应用程序,那什么是单一页面应用程序呢?单一页面应用程序到底有什么好处呢? 下面我们来看一下: 首先我觉得可以把页面的响应模式分成这样大概3个阶段: 1. 最传统的 ...

  3. Java-Maven(二):Maven常用命令

    Maven命令简介 Maven提供了一套命令可以用来创建java工程.编译.打包等操作.通过这些命令来处理工作变得更方便.简洁. Maven工程结构和内容被定义在pom.xml文件中,全称projec ...

  4. QT 设计师使用样式表添加背景

    QT create中样式表可以用来设置背景图.背景颜色.字体大小格式颜色等 1.添加背景图的话需要先添加资源文件 右击项目文件选择添加新文件,再选择QT资源文件(QT resource file)然后 ...

  5. PHP 7.2 新功能介绍

    PHP 7.2 已經在 2017 年 11 月 30 日 正式發布 .這次發布包含新特性.功能,及優化,以讓我們寫出更好的代碼.在這篇文章裡,我將會介紹一些 PHP 7.2 最有趣的語言特性. 你可以 ...

  6. win10的mysql服务无法启动

    net start mysql 无法启动 1.可以进入MySQL的bin目录下 mysql --remove 2.检查一下自己的my.ini是否配置正确 [mysqld] #basedir代表自己My ...

  7. scrapy中的response

    初始化参数 class scrapy.http.Response( url[, status=200, headers, body, flags ] ) 其他成员 url status headers ...

  8. C/C++下调用matlab函数操作说明

    1.matlab的安装 连接:http://pan.baidu.com/s/1qXuF7aO 安装32位版本的matlab(在目录下bin文件夹中有两个文件夹,选择win32文件夹下的setup进行安 ...

  9. 机器学习:scipy和sklearn中普通最小二乘法与多项式回归的使用对

    相关内容连接: 机器学习:Python中如何使用最小二乘法(以下简称文一) 机器学习:形如抛物线的散点图在python和R中的非线性回归拟合方法(以下简称文二) 有些内容已经在上面两篇博文中提到了,所 ...

  10. Drainage Ditches~网络流模板

    Description Every time it rains on Farmer John's fields, a pond forms over Bessie's favorite clover ...