[SCOI2008]斜堆
题目大意
1.题目描述
斜堆(skew heap)是一种常用的数据结构。
它也是二叉树,且满足与二叉堆相同的堆性质:
每个非根结点的值都比它父亲大。因此在整棵斜堆中,根的值最小。
.
但斜堆不必是平衡的,每个结点的左右儿子的大小关系也没有任何规定。
在本题中,斜堆中各个元素的值均不相同。
.
在斜堆\(H\)中插入新元素\(X\) 的过程是递归进行的:
(1)当\(H\)为空或者\(X\)小于\(H\)的根结点时,
\(X\)变为新的树根,而原来的树根(如果有的话)变为\(X\)的左儿子。
.
(2)当\(X\) 大于\(H\) 的根结点时,
\(H\)根结点的两棵子树交换,而\(X\)(递归)插入到交换后的左子树中。
.
给出一棵斜堆,包含值为\(0\)到\(n\)的结点各一次。
求一个结点序列,使得该斜堆可以通过在空树中依次插入这些结点得到。
如果答案不惟一,输出字典序最小的解。输入保证有解。
.
数据范围\(n \leq 50\)
2.样例文件:
input1:
6
100 0 2 102 4 104
output1:
4 6 5 2 0 1 3
..............................................................
input2:
7
0 100 1 102 2 3 5
output2:
2 5 0 3 4 6 7 1
思路及解法:
本题的数据范围出到\(n \leq 5 \times 10^3\)是肯定没问题的。
所以总结一下,本题时间复杂度\(O(n^2)\),空间复杂度\(O(n)\),思维复杂度\(O(n!)\)....
.
言归正传,这题到底怎么做?
由于每次都是插入左子树中,所以就会有一些神奇的事情。
我们考虑 最后一个插入的点 会有什么性质:
(1)性质1:它是一个极左节点(从根到它的路径都是走左子树)
(2)性质2:它一定没有右子树
显然满足上述条件的点有很多,那么仔细观察后可以发现:
性质3:对于树上任意一个点,如果它没有左子树,则它一定没有右子树。
.
然后就可以搞一波事情了。
我们假设最后加入的点为 \(X\) ,如果它的祖先中存在点 \(Y\) 也满足性质\(1,2\),则:
<1>
若\(X\)不为叶子节点:
由于\(X\)插入\(Y\)的子树中时会反转\(Y\)的左右儿子,
那么\(Y\)的当前左子树中包含\(X\),而现在\(Y\)又没有右子树,
所以在插入前,\(Y\)只有右子树,没有左子树。
这显然与性质3矛盾,即这种情况不可能发生。
所以最后插入的点一定是 深度最浅的满足性质1,2的节点,设它为 \(del1\)。
<2>
若\(X\)为叶子节点:
那么即插入\(X\)前\(Y\)没有儿子。
所以这种情况显然是合法的,
即如果\(del1\)有左儿子\(del2\),且\(del2\)为叶子节点,那么\(del2\)也是合法的。
.
综上所述,最后插入的点可能为:
(1)深度最浅的满足性质1,2的节点
(2)深度最浅的满足性质1,2的节点的左儿子,前提是这个左儿子为叶子节点。
由于我们要保证字典序,所以存在(2)情况时我们则优先选叶子节点。
所以我们依照这个原则不断删点、修改。
最后把答案数组倒着输出即可(P.s :建议把所有点的编号都加\(1\)再处理)。
实现代码:
#include<bits/stdc++.h>
#define RG register
#define IL inline
#define mx 60
#define ll long long
using namespace std;
int n,root,fa[60],ls[60],rs[60],ans[60];
IL void Work(){
for(RG int sq = 1; sq <= n; sq ++){
RG int del1 = 0 , del2 = 0, x = root;
while(x){ if(!rs[x]){del1 = x; break;} x = ls[x]; }
if(!rs[ls[x]] && !ls[ls[x]] && ls[x])
del2 = ls[x];
if(del2){ans[sq] = del2; ls[del1] = 0; }
else {
ans[sq] = del1;
ls[fa[del1]] = ls[del1]; fa[ls[del1]] = fa[del1];
}
if(!del2 && del1 == root)root = ls[del1] , fa[root] = 0;;
RG int ff = fa[(del2)?del2 : del1];
while(ff)
swap(ls[ff],rs[ff]) , ff = fa[ff];
}return;
}
int main(){
cin >> n; n++; root = 1;
for(RG int i = 2,f; i <= n; i ++){
cin >> f;
if(f >= 100){f-=100; f++; rs[f] = i; fa[i] = f;}
else f++ , ls[f] = i , fa[i] = f;
}
Work();
for(RG int i = n; i >= 1; i --)ans[i] --;
for(RG int i = n; i >= 1; i --)cout<<ans[i]<<" ";
return 0;
}
[SCOI2008]斜堆的更多相关文章
- BZOJ 1078: [SCOI2008]斜堆
1078: [SCOI2008]斜堆 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 770 Solved: 422[Submit][Status][ ...
- 【bzoj1078】[SCOI2008]斜堆
2016-05-31 16:34:09 题目:http://www.lydsy.com/JudgeOnline/problem.php?id=1078 挖掘斜堆的性质233 http://www.cp ...
- 【BZOJ1078】[SCOI2008]斜堆(性质题)
[BZOJ1078][SCOI2008]斜堆(性质题) 题面 BZOJ 洛谷 题解 考虑一下这道题目的性质吧.思考一下最后插入进来的数是什么样子的.首先因为它是最后插入进来的,所以一定是比某个数小,然 ...
- 【BZOJ 1078】 1078: [SCOI2008]斜堆
1078: [SCOI2008]斜堆 Description 斜堆(skew heap)是一种常用的数据结构.它也是二叉树,且满足与二叉堆相同的堆性质:每个非根结点的值都比它父亲大.因此在整棵斜堆中, ...
- BZOJ1078 [SCOI2008]斜堆 堆
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1078 题意概括 斜堆(skew heap)是一种常用的数据结构.它也是二叉树,且满足与二叉堆相同的 ...
- P2475 [SCOI2008]斜堆(递归模拟)
思路 可并堆真是一种神奇的东西 不得不说这道题是道好题,虽然并不需要可并堆,但是能加深对可并堆的理解 首先考虑斜堆的性质,斜堆和左偏树相似,有如下的性质 一个节点如果有右子树,就一定有左子树 最后插入 ...
- 【bzoj1078】 SCOI2008—斜堆
http://www.lydsy.com/JudgeOnline/problem.php?id=1078 (题目链接) 题意 给出一个斜堆,并给出其插入的操作,求一个字典序最小的插入顺序. Solut ...
- P2475 [SCOI2008]斜堆
题目背景 四川2008NOI省选 题目描述 斜堆(skew heap)是一种常用的数据结构.它也是二叉树,且满足与二叉堆相 同的堆性质:每个非根结点的值都比它父亲大.因此在整棵斜堆中,根的值最小. 但 ...
- [bzoj1078][SCOI2008][斜堆] (贪心)
Description 斜堆(skew heap)是一种常用的数据结构.它也是二叉树,且满足与二叉堆相同的堆性质:每个非根结点的值都比它父亲大.因此在整棵斜堆中,根的值最小.但斜堆不必是平衡的,每个结 ...
随机推荐
- typedef介绍
1.typedef是什么? typedef是C中的类似于extern/static的一个关键字,用于为一种类型引入一个新的名字.并不会分配内存. 2.typedef常见用法? 1) typedef i ...
- gitlab wiki 500
记录一次使用gitlab各种报500的问题,并怎么解决的描述下 一.问题背景 描述我第一次使用wiki的步骤: 二.问题描述 之后我进行任何合法的操作(创建页面使用全英文名称:页面不做任何修改,只是点 ...
- vagrant启动报错The following SSH command responded with a no
vagrant package打包生成box,以这个box为基础模板,打造vagrant环境,启动vagrant报错 angel:vagrant $ vagrant up Bringing machi ...
- Android查缺补漏(IPC篇)-- Bundle、文件共享、ContentProvider、Messenger四种进程间通讯介绍
本文作者:CodingBlock 文章链接:http://www.cnblogs.com/codingblock/p/8387752.html 进程间通讯篇系列文章目录: Android查缺补漏(IP ...
- 权限认证 cookie VS token
权限认证 cookie VS token 我前公司的应用都是 token 授权的,现公司都是维护一个 session 确认登录状态的.那么我在这掰扯掰扯这两种权限认证的方方面面. 工作流程 先说 co ...
- Thinkpad USB 经典键盘使用体验
先上图,这就是一个键盘,不是笔记本电脑. 优点: 1. 键盘完胜各类巧克力式键盘. 2. 小红点和老thinkpad 上的小红点一样好用. 3. ESC 和Delete 放大后,盲摸很方便. 缺点: ...
- python3.6+django2.0 一小时学会开发一套学员管理系统demo
1.在pycharm中新建project demo1 添加app01 点击create按钮完成新建 2.在demo项目目录下新建目录static,并在settings.py中追加代码: STATICF ...
- the c programing language 学习过程8
glean 捡拾落穗; glean insight 深入了解 modeled模型化 peripheral外围的 himogeneous匀称的 intents 意图 excerpt摘录 intende ...
- 流处理与消息队列------《Designing Data-Intensive Applications》读书笔记16
上一篇聊了聊批处理的缺点,对于无界数据来说,流处理会是更好的选择,"流"指的是随着时间的推移逐步增加的数据.消息队列可以将这些流组织起来,快速的在应用程序中给予反馈.但是消息队列与 ...
- java I/O框架 (四)文件流
文件读取 FileInputStream FileReader 文件写入 FileOutputStream FileWriter 随机文件读写 RandomAccessFile 一.文件读取 File ...