●BOZJ 4456 [Zjoi2016]旅行者
题链:
http://www.lydsy.com/JudgeOnline/problem.php?id=4456
题解:
分治好题。
大致做法如下:
对于一开始的矩形区域,过较长边的中点把矩形区域分为两个块。
然后依次以划分线上的点为起点跑最短路(Dijkstra),
尝试以该点为中转点去更新起点和终点都在这个矩形区域内的询问。
显然,如果某个询问的起点和终点在划分线的两侧,那么此时一定可以求出该询问的答案,
(因为其最短路一定会经过划分线上的点)。
那么至于起点和终点都在同侧的询问,那么就递归到更小的区域去求解是否有更优的答案,
(因为其最短路可能不经过当前划分线上的点)。
具体实现建议直接看代码。
(注意在每次Dijkstra前的操作,很巧妙,可以优化时间——我也是学习网上博主的。)
另外时间复杂度分析参见:http://blog.csdn.net/neither_nor/article/details/51733997
(但复杂度分析的最后一步化简我没看太懂,QAQ)
(不得不说,分治代码还真是考代码能力啊,调了老半天)
代码:
#include<queue>
#include<cstdio>
#include<cstring>
#include<iostream>
#define MAXN 30000
#define MAXM 100050
#define INF 0x3f3f3f3f
#define idx(i,j) (i-1)*M+j
using namespace std;
typedef pair<int,int>pii;
struct Query{
int x1,y1,x2,y2,s,t,id;
}q[MAXM];
struct Edge{
int to[MAXM],val[MAXM],nxt[MAXM],head[MAXN],ent;
void Init(){ent=2;}
void Adde(int u,int v,int w){
to[ent]=v; val[ent]=w; nxt[ent]=head[u]; head[u]=ent++;
to[ent]=u; val[ent]=w; nxt[ent]=head[v]; head[v]=ent++;
}
int Next(int i,bool type){
return type?head[i]:nxt[i];
}
}E;
int N,M,Q;
int dis[MAXN],ans[MAXM],dx[MAXN],dy[MAXN];
void Dijkstra(int S,int X1,int Y1,int X2,int Y2,int w){
static bool vis[MAXN]; static int u,v;
static priority_queue<pii,vector<pii>,greater<pii> >H;
for(int i=X1;i<=X2;i++)
for(int j=Y1;j<=Y2;j++){
u=idx(i,j);
w==INF?dis[u]=INF:dis[u]+=w;
vis[u]=0;
}
dis[S]=0; H.push(make_pair(0,S));
while(!H.empty()){
u=H.top().second; H.pop();
if(vis[u]) continue; vis[u]=1;
for(int i=E.Next(u,1);i;i=E.Next(i,0)){
v=E.to[i];
if(dx[v]<X1||dx[v]>X2||dy[v]<Y1||dy[v]>Y2) continue;
if(dis[v]<=dis[u]+E.val[i]) continue;
dis[v]=dis[u]+E.val[i]; H.push(make_pair(dis[v],v));
}
}
}
void Partition(int X1,int Y1,int X2,int Y2,int ql,int qr){
static Query tmp[MAXM];
if(ql>qr||X1>X2||Y1>Y2) return;
if(X2-X1+1<=Y2-Y1+1){
int mid=(Y1+Y2)/2,L=ql,R=qr,S;
dis[idx(X1,mid)]=INF;
for(int i=X1;i<=X2;i++){
S=idx(i,mid);
Dijkstra(S,X1,Y1,X2,Y2,dis[S]);
for(int k=ql;k<=qr;k++)
ans[q[k].id]=min(ans[q[k].id],dis[q[k].s]+dis[q[k].t]);
}
for(int k=ql;k<=qr;k++){
if(q[k].y1<mid&&q[k].y2<mid) tmp[L++]=q[k];
if(q[k].y1>mid&&q[k].y2>mid) tmp[R--]=q[k];
}
for(int i=ql;i<L;i++) q[i]=tmp[i];
for(int i=qr;i>R;i--) q[i]=tmp[i];
Partition(X1,Y1,X2,mid-1,ql,L-1);
Partition(X1,mid+1,X2,Y2,R+1,qr);
}
else{
int mid=(X1+X2)/2,L=ql,R=qr,S;
dis[idx(mid,Y1)]=INF;
for(int j=Y1;j<=Y2;j++){
S=idx(mid,j);
Dijkstra(S,X1,Y1,X2,Y2,dis[S]);
for(int k=ql;k<=qr;k++)
ans[q[k].id]=min(ans[q[k].id],dis[q[k].s]+dis[q[k].t]);
}
for(int k=ql;k<=qr;k++){
if(q[k].x1<mid&&q[k].x2<mid) tmp[L++]=q[k];
if(q[k].x1>mid&&q[k].x2>mid) tmp[R--]=q[k];
}
for(int i=ql;i<L;i++) q[i]=tmp[i];
for(int i=qr;i>R;i--) q[i]=tmp[i];
Partition(X1,Y1,mid-1,Y2,ql,L-1);
Partition(mid+1,Y1,X2,Y2,R+1,qr);
}
}
int main()
{
freopen("tourist.in","r",stdin);
freopen("tourist.out","w",stdout);
E.Init();
scanf("%d%d",&N,&M);
for(int i=1;i<=N;i++)
for(int j=1;j<=M;j++)
dx[idx(i,j)]=i,dy[idx(i,j)]=j;
for(int i=1,w;i<=N;i++)
for(int j=1;j<M;j++)
scanf("%d",&w),E.Adde(idx(i,j),idx(i,j+1),w);
for(int i=1,w;i<N;i++)
for(int j=1;j<=M;j++)
scanf("%d",&w),E.Adde(idx(i,j),idx(i+1,j),w);
scanf("%d",&Q);
for(int i=1;i<=Q;i++){
scanf("%d%d%d%d",&q[i].x1,&q[i].y1,&q[i].x2,&q[i].y2);
q[i].s=idx(q[i].x1,q[i].y1);
q[i].t=idx(q[i].x2,q[i].y2);
q[i].id=i; ans[i]=INF;
}
Partition(1,1,N,M,1,Q);
for(int i=1;i<=Q;i++) printf("%d\n",ans[i]);
return 0;
}
●BOZJ 4456 [Zjoi2016]旅行者的更多相关文章
- 4456: [Zjoi2016]旅行者
4456: [Zjoi2016]旅行者 https://www.lydsy.com/JudgeOnline/problem.php?id=4456 分析: 每次对当前矩阵按长边化一条分治线,然后在对分 ...
- bzoj 4456 [Zjoi2016]旅行者
题面 https://www.lydsy.com/JudgeOnline/problem.php?id=4456 题解 分治 设当前work的区间为(x1,y1,x2,y2) 我们将长边分成两半 不妨 ...
- BZOJ.4456.[ZJOI2016]旅行者(分治 Dijkstra)
题目链接 \(Description\) 给定\(n\times m\)的带边权网格图.\(Q\)次询问从点\((x_i,y_i)\)到点\((x_j,y_j)\)的最短路. \(n\times m\ ...
- [BZOJ4456] [Zjoi2016]旅行者 分治+最短路
4456: [Zjoi2016]旅行者 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 777 Solved: 439[Submit][Status] ...
- P3350 [ZJOI2016]旅行者
题目描述 小Y来到了一个新的城市旅行.她发现了这个城市的布局是网格状的,也就是有n条从东到西的道路和m条从南到北的道路,这些道路两两相交形成n*m个路口 (i,j)(1<=i<=n,1&l ...
- bzoj4456: [Zjoi2016]旅行者
题目链接 bzoj4456: [Zjoi2016]旅行者 题解 网格图,对于图分治,每次从中间切垂直于长的那一边, 对于切边上的点做最短路,合并在图两边的答案. 有点卡常 代码 #include< ...
- 【BZOJ4456】[Zjoi2016]旅行者 分治+最短路
[BZOJ4456][Zjoi2016]旅行者 Description 小Y来到了一个新的城市旅行.她发现了这个城市的布局是网格状的,也就是有n条从东到西的道路和m条从南到北的道路,这些道路两两相交形 ...
- luogu3350 [ZJOI2016]旅行者
链接 P3350 [ZJOI2016]旅行者 题目大意:给出网格图,求两点之间最短路,多组询问. \(n*m\leq10^5\ \ q\leq 10^5\) 考虑\(CDQ\)分治. 首先把询问离线, ...
- Luogu 3350 [ZJOI2016]旅行者
BZOJ 4456 听若干个大佬讲过$n$遍终于写掉了. 我把时限基本上跑满了2333…… 分治 + 最短路. 首先我们去分治这个矩形格子,找到一条长边把它对半切,对切开的边上的每一个点跑一遍最短路然 ...
随机推荐
- 201621123031 《Java程序设计》第9周学习总结
作业09-集合与泛型 1.本周学习总结 1.1 以你喜欢的方式(思维导图或其他)归纳总结集合与泛型相关内容. 一.泛型的基本概念 泛型是JDK 1.5的一项新特性,它的本质是参数化类型(Paramet ...
- 织梦cms/dedecms清理冗余废弃未引用图片方法
原理描述: 在原有织梦后台菜单中增加"清理冗余图片按钮",实现清理冗余图片的功能. 操作步骤: 1. 打开后台dede\sys_sql_query.php代码 在该文件中搜索如下代 ...
- zookeeper 入门系列-理论基础 – zab 协议
上一章讨论了paxos算法,把paxos推到一个很高的位置.但是,paxos有没有什么问题呢?实际上,paxos还是有其自身的缺点的: 1. 活锁问题.在base-paxos算法中,不存在leader ...
- JAVA_SE基础——57.有了包之后类与类之间的访问使用import语句
代码1访问代码2 代码1: class Demo3 { public static void main(String[] args) { Demo4 a = new Demo4(); a.print( ...
- Linux的打印rpm包的详细信息的shell脚本
#!/bin/bash # list a content summary of a number of RPM packages # USAGE: showrpm rpmfile1 rpmfile2 ...
- kali linux 2.0 web 渗透测试 电子书
原创 2017-05-31 玄魂工作室 玄魂工作室 打起精神,重新开启订阅号的原创文章写作工作,但是需要点时间,请耐心等待. 求资料的同学,没有及时回复的,请再次留言,我会尽快处理.今天分享两本电子书 ...
- vue-cli项目中,全局引入jquery
命令行执行 npm install --save jquery 找到webpack.base.conf.js文件,写入代码: const webpack = require('webpack') 在m ...
- 自动化服务部署(一):Linux下安装JDK
自动化测试的主要目的是为了执行回归测试.当然,为了模拟真实的用户操作,一般都是在UAT或者生产环境进行回归测试. 为了尽量避免内网和外网解析对测试结果的影响,将自动化测试服务部署在外网的服务器是比较好 ...
- kubernetes入门(07)kubernetes的核心概念(4)
一.pod 二.Volume volume可以为容器提供持久化存储,比如 三.私有镜像 在使用私有镜像时,需要创建一个docker registry secret,并在容器中引用.创建docker r ...
- SpringCloud应用入库后乱码问题
一.现象 1.请求 2.入库后 二.解决过程 1.配置application.properties 2.代码配置 3.数据库(关键!!) 3.请求 三.验证过程 1.win10 - 本地验证通过 2. ...