bzoj 2734: [HNOI2012]集合选数
题目描述
《集合论与图论》这门课程有一道作业题,要求同学们求出{1, 2, 3, 4, 5}的所有满足以 下条件的子集:若 x 在该子集中,则 2x 和 3x 不能在该子集中。
同学们不喜欢这种具有枚举性 质的题目,于是把它变成了以下问题:对于任意一个正整数 n<=100000,如何求出{1, 2,..., n} 的满足上述约束条件的子集的个数(只需输出对 1,000,000,001 取模的结果),现在这个问题就 交给你了。
输入输出格式
输入格式:
只有一行,其中有一个正整数 n,30%的数据满足 n<=20。
输出格式:
仅包含一个正整数,表示{1, 2,..., n}有多少个满足上述约束条件 的子集。
输入输出样例
4
8 【样例解释】 有8 个集合满足要求,分别是空集,{1},{1,4},{2},{2,3},{3},{3,4},{4}。 题解:
这题很有意思,首先你得想到画出所有的倍数表,然后再发现规律......
如:
1 3 9
2 6 18
4 12 36
8 24 72
16 48 144
32 96 288 大概是这样横着是乘三,竖着乘二
这样画出来就发现题目要求的就是所选的数不能相邻......且行列都是log的所以可以直接状压dp
设f[i][j] 表示前i行,第j行状态为j 那么判断一下直接转移就是了
注意状压的要是乘三的,状态比乘二的少很多.
做到这样发现这个矩阵并没有包括所有的数字
所以还需要找到一个没出现的数继续构造矩阵并dp统计
如没出现的7
7 21 63.....
14 42 126...
继续构造即可
最后答案统计时相乘即可
#include <algorithm>
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <cmath>
#define RG register
#define il inline
using namespace std;
typedef long long ll;
const int N=<<,M=,mod=;
int f[][N],lim,sz[N];
bool vis[M];
il int deal(int sta){
int n=,s=sta,t=sta;
for(int i=;i<=;i++){
if(s>lim){
n=i-;
break;
}
vis[s]=true;t=s;
sz[i]=;
for(int j=;j<=;j++){
if(t>lim)break;
vis[t]=true;
sz[i]++;
t=(t<<)+t;
}
s<<=;
}
f[][]=;
for(int i=;i<=n;i++){
int tot=(<<sz[i])-;
for(RG int j=;j<=tot;j++){
if((j<<)&j)continue;
int tmp=(<<sz[i-])-;
f[i][j]=;
for(RG int k=;k<=tmp;k++){
if((k<<)&k)continue;
if(j&k)continue;
f[i][j]+=f[i-][k];
if(f[i][j]>=mod)f[i][j]-=mod;
}
}
}
int tot=(<<sz[n])-,ret=;
for(RG int j=;j<=tot;j++){
if(j&(j<<))continue;
ret+=f[n][j];if(ret>=mod)ret-=mod;
}
return ret;
}
void work()
{
scanf("%d",&lim);
ll ans=;
for(int i=;i<=lim;i++){
if(!vis[i])
ans*=deal(i),ans%=mod;
}
printf("%lld\n",ans);
} int main()
{
work();
return ;
}
bzoj 2734: [HNOI2012]集合选数的更多相关文章
- bzoj 2734: [HNOI2012]集合选数 状压DP
2734: [HNOI2012]集合选数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 560 Solved: 321[Submit][Status ...
- 【刷题】BZOJ 2734 [HNOI2012]集合选数
Description <集合论与图论>这门课程有一道作业题,要求同学们求出{1, 2, 3, 4, 5}的所有满足以 下条件的子集:若 x 在该子集中,则 2x 和 3x 不能在该子集中 ...
- BZOJ 2734 [HNOI2012]集合选数 (状压DP、时间复杂度分析)
题目链接 https://www.lydsy.com/JudgeOnline/problem.php?id=2734 题解 嗯早就想写的题,昨天因为某些不可告人的原因(大雾)把这题写了,今天再来写题解 ...
- BZOJ 2734: [HNOI2012]集合选数 [DP 状压 转化]
传送门 题意:对于任意一个正整数 n≤100000,如何求出{1, 2,..., n} 的满足若 x 在该子集中,则 2x 和 3x 不能在该子集中的子集的个数(只需输出对 1,000,000,001 ...
- bzoj 2734 [HNOI2012]集合选数 状压DP+预处理
这道题很神啊…… 神爆了…… 思路大家应该看别的博客已经知道了,但大部分用的插头DP.我加了预处理,没用插头DP,一行一行来,速度还挺快. #include <cstdio> #inclu ...
- 2734: [HNOI2012]集合选数
2734: [HNOI2012]集合选数 链接 分析: 转化一下题意. 1 3 9 27... 2 6 18 54... 4 12 36 108... 8 24 72 216... ... 写成这样的 ...
- 2734: [HNOI2012]集合选数 - BZOJ
Description <集合论与图论>这门课程有一道作业题,要求同学们求出{1, 2, 3, 4, 5}的所有满足以 下条件的子集:若 x 在该子集中,则 2x 和 3x 不能在该子集中 ...
- 【BZOJ】2734: [HNOI2012]集合选数
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2734 考虑$N=4$的情况: \begin{bmatrix} 1&3 &X ...
- BZOJ_2734_[HNOI2012]集合选数_构造+状压DP
BZOJ_2734_[HNOI2012]集合选数_构造+状压DP 题意:<集合论与图论>这门课程有一道作业题,要求同学们求出{1, 2, 3, 4, 5}的所有满足以 下条件的子集:若 x ...
随机推荐
- android 广播,manifest.xml注册,代码编写
1.种 private void downloadBr(File file) { // 广播出去,由广播接收器来处理下载完成的文件 Intent sendIntent = new Intent ...
- 2017 清北济南考前刷题Day 4 afternoon
期望得分:30+50+30=110 实际得分:40+0+0=40 并查集合并再次写炸... 模拟更相减损术的过程 更相减损术,差一定比被减数小,当被减数=减数时,停止 对于同一个减数来说,会被减 第1 ...
- 再议Python协程——从yield到asyncio
协程,英文名Coroutine.前面介绍Python的多线程,以及用多线程实现并发(参见这篇文章[浅析Python多线程]),今天介绍的协程也是常用的并发手段.本篇主要内容包含:协程的基本概念.协程库 ...
- css3动画transition详解2
transition主要包含四个属性值:执行变换的属性:transition-property,变换延续的时间:transition-duration,在延续时间段,变换的速率变化transition ...
- 微信qq,新浪等第三方授权登录的理解
偶们常说的第三方是指的微信,qq,新浪这些第三方,因为现在基本每个人都有qq或者微信,那么我们就可以通过这些第三方进行登录.而这些网站比如慕课网是通过第三方获取用户的基本信息 它会有个勾选按钮,提示是 ...
- 原生JavaScript实现页面回到顶部的功能
/*如果想实现点击一个按钮让滚动条回到最顶部的功能,首先可能就会想到它是从底部位置移动到顶部的位置 它是一个运动的过程,只要知道当前位置(current Position)和想要到达的位置(targe ...
- istio入门(02)istio的架构和概念
Istio从逻辑上可以分为数据平面和控制平面: 数据平面主要由一系列的智能代理(Envoy)组成,管理微服务之间的网络通信 控制平面负责管理和配置这些智能代理,并动态执行策略 主要由以下组件构成 En ...
- Docker学习笔记 - Docker的数据卷
一.什么是数据卷? 数据卷是一个可供一个或多个容器使用的特殊目录,它绕过 UFS,可以提供很多有用的特性: 数据卷可以在容器之间共享和重用 对数据卷的修改会立马生效 对数据卷的更新,不会影响镜像 数据 ...
- python入门(14)定义函数和接收返回值
定义函数: 定义一个求绝对值的my_abs函数为例: def my_abs(x): if x >= 0: return x else: return -x 如果没有return语句,函数执行完毕 ...
- python isinstance 函数
isinstance是Python中的一个内建函数 语法: isinstance(object, classinfo) 如果参数object是classinfo的实例,或者object是class ...