Let \(\partial_i =\frac{\partial}{\partial x_i}\). The operator \(\partial_i\) is unbounded on \(L^2(\gamma)\). We will explore its adjoint operator \(\partial^*_i\)  in \(L^2(\gamma)\). For this purpose, take \(f,g\in C_0^{\infty}\), i.e., infinitely many times differentiable functions with compact support. Then

\[\begin{array}{rcl}<\partial_{i}f,g>_{L^{2}\left(\gamma\right)} & = & \frac{1}{\left(2\pi\right)^{\frac{d}{2}}}\int\partial_{i}f\left(x\right)g\left(x\right)e^{-\frac{\left|x\right|^{2}}{2}}dx\\& = & \frac{1}{\left(2\pi\right)^{\frac{d}{2}}}\int f\left(x\right)\left[x_{i}g\left(x\right)-\partial_{i}g\left(x\right)\right]e^{-\frac{\left|x\right|^{2}}{2}}dx\\& = & <f,\left(x_{i}-\partial_{i}\right)g>_{L^{2}\left(\gamma\right)}.\end{array}\]

We see that \(\partial_{i}^{*}=x_{i}-\partial_{i}\), where the first term is a multiplication operator. Define a second-order differential operator by

\[L=\sum_{i=1}^{d}\partial_{i}^{*}\partial_{i}=x\cdot\nabla-\Delta\]

It is positive and symmetric and plays the role of the Laplacian on \(L^{2}(\gamma)\). Symmetry is shown by

\[<Lf,g>=\sum_{i=1}^{d}<\partial_{i}^{*}\partial_{i}f,g>=\sum_{i=1}^{d}<\partial_{i}f,\partial_{i}g>=\sum_{i=1}^{d}<f,\partial_{i}^{*}\partial_{i}g>=<f,Lg>\]

Positivity follows by setting \(f=g\) in the middle expression above.

The operator \(L\) is called the Ornstein-Uhlenbeck operator.

Proposition The Hermite polynomials are eigenvectors for the Ornstein-Uhlenbeck operator. Moreover, for any multi-index \(\alpha\in\mathbb{N}^{d}\),

\[LH_{\alpha}=\left|\alpha\right|H_{\alpha}.\]

Proof. Again consider \(d=1\). We first explore the action of \(D^{*}\) on \(H_{n}\).

\[<D^{*}H_{n-1},H_{j}>=<H_{n-1},DH_{j}>=n<H_{n-1},H_{j-1}>=0,j\ne n.\]

So, \(D^{*}H_{n-1}\) is a multiple of \(H_{n}\). Take \(j=n\).

\[<D^{*}H_{n-1},H_{n}>=n<H_{n-1},H_{n-1}>=n(n-1)!=n!=<H_{n},H_{n}>.\]

Thus \(D^{*}H_{n-1}=H_{n}\) and it follows that \(\partial_{i}^{*}H_{\alpha-e_{i}}=H_{\alpha}\), for \(d\ge1\), Where \(e_{1},\ldots,e_{n}\) is the standard orthonormal

system. Hence

\[LH_{\alpha}=\sum_{i=1}^{d}\partial_{i}^{*}\partial_{i}H_{\alpha}=\sum_{i=1}^{d}\partial_{i}^{*}\alpha_{i}H_{\alpha-e_{i}}=\sum_{i=1}^{d}\alpha_{i}H_{\alpha}=\left|\alpha\right|H_{\alpha}.\]

We now turn to the Ornstein-Uhlenbeck semigroup, i.e., the semigroup generated by \(L\). For this purpose we use our spectral decomposition of \(L^{2}(\gamma)\). Since \(\left\{ H_{\alpha},\alpha\in\mathbb{N}\right\}\) form a orthonormal system of \(L^{2}(\gamma)\), for any \(f\in L^{2}(\gamma)\),

\[f=\sum_{\alpha\in\mathbb{N}}a_{\alpha}H_{\alpha}.\]

Let \(\left(T_{t}\right)_{t\ge0}=\left(e^{-tL}\right)_{t\ge 0}\) be the family of bounded linear operators acting on \(L^{2}(\gamma)\) by

\[e^{-tL}f=\sum_{\alpha\in\mathbb{N}^{d}}e^{t\left|\alpha\right|}a_{\alpha}H_{\alpha}.\]

In particular

\[e^{-tL}H_{\alpha}=e^{-t\left|\alpha\right|}H_{\alpha}.\]

It follows that \(e^{-tL}\) is a bounded operator on \(L^{2}(\alpha)\) for any \(t\ge0\) and that \(e^{-tL}e^{-sL}=e^{-(s+t)L},s,t\ge0\). Since \(T_{0}\) is the identity, \(\left(T_{t}\right)_{t\ge0}\) forms a semigroup.

Any \(\Phi\in L^{2}(\gamma\times\gamma)\) defines a bounded linear operator on \(L^{2}(\gamma)\) by

\[Tf(x)=\int\Phi(x,y)f(y)d\gamma(y).\]

It is not essential here that we work in our Gaussian setting. Any \(L^{2}\)-space would do fine. We verify the boundedness. The Cauchy-Schwardz inequality gives that

\[\left(Tf(x)\right)^{2}\le\int|\Phi(x,y)|^{2}d\gamma(y)\int|f(y)|^{2}d\gamma(y).\]

Integrating both sides in \(x\) leads to

\[\left|\left|Tf\right|\right|^{2}\le\left|\left|\Phi\right|\right|_{L^{2}(\gamma\times\gamma)}^{2}\left|\left|f\right|\right|^{2}.\]

We now leave the general situation. The operator \(T_{t}\), for \(t>0\), is given by a kernel in the sense that

\[T_{t}f(x)=\int_{\mathbb{R}^{d}}M_{t}^{\gamma}(x,y)f(y)d\gamma(y).\]

The explicit expression for this kernel was found already in 1866 by Mehler. It is named the Mehler kernel. Using the normalized Hermite polynomials \(h_{\alpha}\), we shall first verify that the kernel can be expressed in the form

\[M_{t}^{\gamma}(x,y)=\sum_{\alpha\in\mathbb{N}^{d}}e^{-t|\alpha|}h_{\alpha}(x)h_{\alpha}(y).\]

It is easy to check that this series converges in \(L^{2}(\gamma\times\gamma)\). Consider, for $N\in\mathbb{N}$, the truncated kernel

\[\sum_{|\alpha|<N}e^{-t|\alpha|}h_{\alpha}(x)h_{\alpha}(y).\]

For \(|\beta|<N\), the corresponding operator acts on \(H_{\beta}\) as

\[\int\sum_{|\alpha|<N}e^{t|\alpha|}h_{\alpha}(x)h_{\alpha}(y)H_{\beta}(y)d\gamma(y)=e^{-t|\beta|}<h_{\beta},H_{\beta}h_{\beta}(x)=e^{-t|\beta|}\left|\left|H_{\beta}\right|\right|h_{\beta}(x)=e^{-t|\beta|}H_{\beta}=T_{t}H_{\beta}.\]

Since the truncated kernels converge in \(L^{2}(\gamma\times\gamma)\), the corresponding operators converge in the operator norm. We conclude that \(T_{t}\) can be epresented by Mehler kernel. We next want to compute a closed expression for \(M_{t}^{\gamma}\). Let \(d=1\). Since \(\mathcal{F}\left(e^{-\xi^{2}}\right)(x)=\sqrt{\pi}e^{-\frac{x^{2}}{4}}\), where \(\mathcal{F}\) denotes the Fourier transform, \(H_{n}\) can be written

\[\begin{array}{rcl}H_{n}\left(y\right) & = & \left(-1\right)^{n}e^{\frac{y^{2}}{2}}\frac{d^{n}}{dy^{n}}e^{-\frac{y^{2}}{2}}=\left(-1\right)^{n}e^{\frac{y^{2}}{2}}\frac{d^{n}}{dy^{n}}\frac{1}{\sqrt{2\pi}}\int e^{iy\xi-\frac{^{\xi^{2}}}{2}}d\xi\\& = & \left(-1\right)^{n}e^{\frac{y^{2}}{2}}\frac{i^{n}}{\sqrt{2\pi}}\int\xi^{n}e^{iy\xi-\frac{\xi^{2}}{2}}d\xi.\end{array}\]

Assuming that the order of summation and integration can be switched. By using the generating function of Hermite polynomial, we get

\[\begin{array}{rcl}M_{t}^{\gamma} & = & \sum_{n=0}^{\infty}e^{-tn}h_{n}\left(x\right)h_{n}\left(y\right)\\& = & \sum_{n=0}^{\infty}e^{-tn}\frac{1}{n!}H_{n}\left(x\right)\left(-1\right)^{n}e^{\frac{y^{2}}{2}}\frac{i^{n}}{\sqrt{2\pi}}\int\xi^{n}e^{iy\xi-\frac{\xi^{2}}{2}}d\xi\\& = & \frac{1}{\sqrt{2\pi}}e^{\frac{y^{2}}{2}}int\sum_{n=0}^{\infty}\frac{1}{n!}\left(-i\xi e^{-t}\right)^{n}H_{n}\left(x\right)e^{iy\xi-\frac{\xi^{2}}{2}}d\xi\\& = & \frac{1}{\sqrt{2\pi}}e^{\frac{y^{2}}{2}}\int e^{i\xi\left(y-e^{t}x+\frac{\xi^{2}}{2}e^{-2t}\right)}d\xi\end{array}\]

Let \(\xi^{t}=\xi\sqrt{1-e^{-2t}}\). Then, taking the inverse Fourier transform yields

\[M_{t}^{\gamma}\left(x,y\right)=\frac{e^{\frac{y^{2}}{2}}}{\sqrt{1-e^{-2t}}}e^{-\frac{\left(y-e^{-t}x\right)^{2}}{1-e^{-2t}}}.\]

This is a closed expression for the kernel, but it remains to verify the switch of order above. BY using dominated convergence theorem, it is ease to get the conclusion. Let \(d\ge1\). Then

\[M_{t}^{\gamma}\left(x,y\right)=\frac{e^{\frac{\left|y\right|^{2}}{2}}}{\sqrt{\left(1-e^{-2t}\right)^{d}}}e^{-\frac{\left|y-e^{-t}x\right|^{2}}{1-e^{-2t}}}.\]

Making the change of variable \(z=\frac{y-e^{-t}x}{\sqrt{1-e^{-2t}}}\), we get

\[T_{t}f\left(x\right)=\int M_{t}^{\gamma}\left(x,y\right)f\left(y\right)d\gamma\left(y\right)=\int f\left(e^{-t}x+z\sqrt{1-e^{-2t}}\right)d\gamma\left(z\right).\]

This is sometimes called Mehler's formula.

\(\S2. \)The Ornstein-Uhlenbeck operator and its semigroup的更多相关文章

  1. C++ Primer : : 第十四章 : 重载运算符与类型转换之类型转换运算符和重载匹配

    类型转换运算符 class SmallInt { public: SmallInt(int i = 0) : val(i) { if (i < 0 || i > 255) throw st ...

  2. C++ 重载操作符与转换

    <C++ Primer 4th>读书笔记 重载操作符是具有特殊名称的函数:保留字 operator 后接需定义的操作符号. Sales_item operator+(const Sales ...

  3. LA 5135 Mining Your Own Business

    求出 bcc 后再……根据大白书上的思路即可. 然后我用的是自定义的 stack 类模板: #include<cstdio> #include<cstring> #includ ...

  4. 从String类看写C++ class需要注意的地方

    #include <iostream> #include <string.h> using namespace std; class String { char* m_data ...

  5. C++学习笔记9-运算符重载

    1. 重载运营商必须有一个类类型的操作数 对于内置类型运营商.它的意义不能改变. 例如,内置整数加法运算不能被重新定义: // error: cannotredefine built-in opera ...

  6. 《C++ Primer》之重载操作符与转换(下)

    转换与类类型 可用一个实参调用的非 explicit 构造函数定义一个隐式转换.当提供了实参类型的对象而需要一个类类型的对象时,编译器将使用该转换.这种构造函数定义了到类类型的转换.除了定义到类类型的 ...

  7. VK Cup 2017 - Round 2

    FallDream打的AB都FFT了,只剩一个我打的C,没进前一百,之后看看马拉松复活赛有没机会呗. A. Voltage Keepsake 题目大意:n个东西,每个东西一开始有bi能源,每秒消耗ai ...

  8. 2019.01.14 bzoj2752: [HAOI2012]高速公路(线段树)

    传送门 线段树菜题. 题意简述:给一条nnn个点的链,链有边权,支持区间修改边权,查询在一段区间内随机选择不同的起点和终点路径的期望总边权和. 思路:考虑每条边的贡献. 考虑对于一段区间[l,r][l ...

  9. AOAPC I: Beginning Algorithm Contests (Rujia Liu) Volume 6. Mathematical Concepts and Methods

    uva 106 这题说的是 说计算 x^2 + y^2  =  z^2  xyz 互质 然后计算个数和 在 N内 不在 勾股数之内的数的个数 然后去找需要的 维基百科上 看到 另 n*m*2 =b   ...

随机推荐

  1. JavaScript依赖注入的实现思路

    JavaScript依赖注入的实现思路 如今各个框架都在模块化,连前端的javascript也不例外.每个模块负责一定的功能,模块与模块之间又有相互依赖,那么问题来了:javascript的依赖注入如 ...

  2. Spring MVC CORS support

    使用详见: https://spring.io/blog/2015/06/08/cors-support-in-spring-framework 简单用法,在Controller 方法上加 @Cros ...

  3. [goa]golang微服务框架学习--安装使用

      当项目逐渐变大之后,服务增多,开发人员增加,单纯的使用go来写服务会遇到风格不统一,开发效率上的问题. 之前研究go的微服务架构go-kit最让人头疼的就是定义服务之后,还要写很多重复的框架代码, ...

  4. android创建桌面快捷方式(启动目标非项目的启动页)

    1.布局文件中,目标Activity加入以下filter <intent-filter>                  <action android:name="an ...

  5. delphi真随机数发生器

    当然不是绝对真随机,是相对真随机数 下载

  6. MVC 之 WebAPI 系列二

    今天,我想在此记录下 WebApi 跨域调用 1. 什么叫跨域: 跨域问题简单理解就是JavaScript同源策略的限制,其根本原因是因为浏览器对于这种请求,所给予的权限是较低的,通常只允许调用本域中 ...

  7. Beyond Compare 2

    Beyond Compare 2 确实很好用,差异行不交叉,自动留出空白,比windiff要清楚.

  8. php内核探索 [转]

    PHP内核探索:从SAPI接口开始 PHP内核探索:一次请求的开始与结束 PHP内核探索:一次请求生命周期 PHP内核探索:单进程SAPI生命周期 PHP内核探索:多进程/线程的SAPI生命周期 PH ...

  9. 了解Hadoop和大数据

    1. 场景: 现在人产生数据越来越快,机器则更快,所以需要另外的一种处理数据的方法.   硬盘容量增加,但是性能没跟上,解决办法是将数据分到多块硬盘,然后同时读取. 问题:     硬件问题 -- 复 ...

  10. Google高级搜索语法

    Google高级搜索语法   Google搜索果真是一个强悍的不得了的搜索引擎,今天转了一些 google的高级搜索语法 希望能帮助到大家. 一.allinanchor: anchor是一处说明性的文 ...