Time Limit: 5 Seconds Memory Limit: 32768 KB Special Judge

Network of Byteland consists of n servers, connected by m optical cables. Each cable connects two servers and can transmit data in both directions. Two servers of the network are especially important — they are connected to global world network and president palace network respectively.

The server connected to the president palace network has number 1, and the server connected to the global world network has number n.

Recently the company Max Traffic has decided to take control over some cables so that it could see what data is transmitted by the president palace users. Of course they want to control such set of cables, that it is impossible to download any data from the global network to the president palace without transmitting it over at least one of the cables from the set.

To put its plans into practice the company needs to buy corresponding cables from their current owners. Each cable has some cost. Since the company’s main business is not spying, but providing internet connection to home users, its management wants to make the operation a good investment. So it wants to buy such a set of cables, that cables mean cost} is minimal possible.

That is, if the company buys k cables of the total cost c, it wants to minimize the value of c/k.

Input

There are several test cases in the input. The first line of each case contains n and m (2 <= n <= 100 , 1 <= m <= 400 ). Next m lines describe cables~— each cable is described with three integer numbers: servers it connects and the cost of the cable. Cost of each cable is positive and does not exceed 107.

Any two servers are connected by at most one cable. No cable connects a server to itself. The network is guaranteed to be connected, it is possible to transmit data from any server to any other one.

There is an empty line between each cases.

Output

First output k — the number of cables to buy. After that output the cables to buy themselves. Cables are numbered starting from one in order they are given in the input file. There should an empty line between each cases.

Example

Input

6 8

1 2 3

1 3 3

2 4 2

2 5 2

3 4 2

3 5 2

5 6 3

4 6 3

4 5

1 2 2

1 3 2

2 3 1

2 4 2

3 4 2

Output

4

3 4 5 6

3

1 2 3

Source: Andrew Stankevich’s Contest #8

在Amber写的《最小割在信息学竞赛中的应用》看到的一道例题,所以就拿来做做,但是出现了不少的问题

题意:给出一个带权的无向图,每一条边有一个权值w,求将s与t分开的一个边割集,使得边割集的平均值最小。

具体的做法可以看看AMber的论文,这里有几个疑惑

1. 为什么在DFS过程中不加引用就TLE

2. 为什么在Dinic过程中不复制就会WA

#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cmath>
#include <string>
#include <queue>
#include <stack>
#include <algorithm>
#include <iostream> using namespace std; const double eps = 1e-6; const int INF = 0x3f3f3f3f; const int MaxN = 110; const int MaxM = 51000; typedef struct Node
{
int u,v,cap;
}Point ; typedef struct node
{
int v,next; double cap;
}edge; Point a[MaxN*4]; edge e[MaxM]; int H[MaxN],Head[MaxN],top,vis[MaxN]; int n,m; double L,R; int dbcmp(double s)
{
if(fabs(s)<eps)
{
return 0;
} return s>0?1:-1;
} void AddEdge(int u,int v,double cap)
{
e[top].v =v ;e[top].cap = cap; e[top].next = H[u]; H[u] = top++;
} bool BFS()
{
memset(vis,0,sizeof(vis)); vis[1] =1; queue<int>Q; Q.push(1); while(!Q.empty())
{
int u =Q.front(); Q.pop(); for(int i = H[u];~i;i = e[i].next)
{
if(dbcmp(e[i].cap)>0&&!vis[e[i].v])
{
vis[e[i].v] = vis[u]+1; Q.push(e[i].v); if(e[i].v==n)
{
return 1;
}
}
}
} return 0;
} double DFS(int u,double cap)
{
if(u==n)
{
return cap;
}
double ans =0; for(int &i =Head[u];i!=-1; i = e[i].next) //不加引用就超时
{
if(vis[e[i].v]==vis[u]+1&&dbcmp(e[i].cap)>0)
{
double ant = DFS(e[i].v,min(cap,e[i].cap)); if(ant)
{
e[i].cap-=ant; e[i^1].cap+=ant; return ant;
}
}
}
return 0;
} double Dinic()//求最小割
{
double ans = 0; while(BFS())
{
memcpy(Head,H,sizeof(H));//不复制就WA
while(double ant = DFS(1,INF))
ans+=ant;
}
return ans;
} double Build(double s)
{
top =0; memset(H,-1,sizeof(H)); double ans = 0; for(int i=1;i<=m;i++)
{
if(a[i].cap>s)
{
AddEdge(a[i].u,a[i].v,a[i].cap-s); AddEdge(a[i].v,a[i].u,a[i].cap-s);
}
else ans += (a[i].cap-s);
} return ans+Dinic();
} double Search()
{
double mid; while(dbcmp(R-L)>0)
{
mid = (L+R)/2; double ant = Build(mid); if(dbcmp(ant)>0)
{ L = mid;
}
else
{
R = mid;
}
}
return mid;
} void dfs(int u)
{
vis[u] = 1; for(int i = H[u];i!=-1;i = e[i].next)
{
if(dbcmp(e[i].cap)>0&&!vis[e[i].v])
{
dfs(e[i].v);
}
}
} int main()
{
int z = 0; while(~scanf("%d %d",&n,&m))
{
L = 0,R = 0;
for(int i=1;i<=m;i++)
{
scanf("%d %d %d",&a[i].u,&a[i].v,&a[i].cap); R+=a[i].cap;
} double ans = Search(); Build(ans); memset(vis,0,sizeof(vis)); dfs(1); int num = 0; for(int i=1;i<=m;i++)
{
if(vis[a[i].v]+vis[a[i].u]==1||a[i].cap<ans)
{
num++;
}
} if(z++)
{
printf("\n");
} printf("%d\n",num); bool flag = false; for(int i=1;i<=m;i++)
{
if(vis[a[i].v]+vis[a[i].u]==1||a[i].cap<ans)
{
if(flag)
{
printf(" ");
}
else flag= true; printf("%d",i);
}
}
printf("\n");
}
return 0;
}

Network Wars-ZOJ2676最小割+01规划的更多相关文章

  1. POJ 1966 Cable TV Network 【经典最小割问题】

    Description n个点的无向图,问最少删掉几个点,使得图不连通 n<=50 m也许可以到完全图? Solution 最少,割点,不连通,可以想到最小割. 发现,图不连通,必然存在两个点不 ...

  2. CodeChef - RIN 最小割应用 规划问题

    题意:给定\(n\)门课和\(m\)个学期,每门课在每个学期有不同的得分,需要选定一个学期去完成,但存在约束条件,共有\(k\)对课程需要\(a\)在\(b\)开始学前学会,求最大得分(原问题是求最高 ...

  3. UVA1660 电视网络 Cable TV Network[拆点+最小割]

    题意翻译 题目大意: 给定一个n(n <= 50)个点的无向图,求它的点联通度.即最少删除多少个点,使得图不连通. 解析 网络瘤拆点最小割. 定理 最大流\(=\)最小割 感性地理解(口胡)一下 ...

  4. POJ 1966 Cable TV Network (点连通度)【最小割】

    <题目链接> 题目大意: 给定一个无向图,求点连通度,即最少去掉多少个点使得图不连通. 解题分析: 解决点连通度和边连通度的一类方法总结见   >>> 本题是求点连通度, ...

  5. ZOJ 2676 Network Wars ★(最小割算法介绍 && 01分数规划)

    [题意]给出一个带权无向图,求割集,且割集的平均边权最小. [分析] 先尝试着用更一般的形式重新叙述本问题.设向量w表示边的权值,令向量c=(1, 1, 1, --, 1)表示选边的代价,于是原问题等 ...

  6. zoj 2676 Network Wars 0-1分数规划+最小割

    题目详解出自 论文 Amber-最小割模型在信息学竞赛中的应用 题目大意: 给出一个带权无向图 G = (V,E), 每条边 e属于E都有一个权值We,求一个割边集C,使得该割边集的平均边权最小,即最 ...

  7. HDU 2676 Network Wars 01分数规划,最小割 难度:4

    http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=1676 对顶点i,j,起点s=1,终点t=n,可以认为题意要求一组01矩阵use ...

  8. zoj2676 Network Wars(0-1分数规划,最大流模板)

    Network Wars 07年胡伯涛的论文上的题:http://wenku.baidu.com/view/87ecda38376baf1ffc4fad25.html 代码: #include < ...

  9. zoj 2676 二分+ISAP模板求实型参数的最小割(0-1分数规划问题)(可做ISAP模板)

    /* 参考博文:http://www.cnblogs.com/ylfdrib/archive/2010/09/01/1814478.html 以下题解为转载代码自己写的: zoj2676 胡伯涛论文& ...

随机推荐

  1. Source Insight下提示未完整安装的问题

    网上的破解版的注册表文件都是针对32位系统的,所以在64位系统里运行根本无法破解.下面分别贴出这俩系统里的破解文件. 使用方法: 分别复制对应系统的内容,新建文本文档,将内容粘贴进去,重命名为.reg ...

  2. Swift 语法篇

    一.输出语句 print("Hello World") print("Hello World 11", "Hello World 22", ...

  3. sed处理url编码解码=== web日志的url处理

    URL 编码/解码方法(linux  shell实现),方法如下: 1.编码的两种方法: admin@~ 11:14:29>echo '手机' | tr -d '\n' | xxd -plain ...

  4. laravel5.1学习(1)--安装

    主要学习的是laravel5.1版本,服务器用的是wampserver3.0.4集成环境: 首先,安装composer(windows系统) 下载地址:https://getcomposer.org/ ...

  5. 使用Microsoft Fakes隔离测试代码

    在单元测试(Unit Test)中我们遇到的问题之一是:假如被测试组件(类或项目)为A,组件A依赖于组件B,那么在组件A的单元测试ATest中测试A时,也需要依赖于B,在B发生改动后,就可能影响到A的 ...

  6. 使用DiskFileItemFactory 实现文件上传 ,设定缓冲区大小和存放临时文件目录。

    DiskFileItemFactory有两个方法 :setSizeThreshold和.setRepository 1. setRepository方法用于设置当上传文件尺寸大于setSizeThre ...

  7. angularJS 按需加载

    之前做应用的时候都会在首页就把全站的js预先加载进来... 怎么实现按需加载? 首先在$routeProvider里面加resolve属性,angular-route提供的resolve功能,也就是路 ...

  8. ARP协议学习

    1.地址解析协议,即ARP(Address Resolution Protocol),是根据IP地址获取物理地址的一个TCP/IP协议.所以,ARP就是把IP地址解析为MAC地址. 2.如何查看和清除 ...

  9. zabbix利用自带的模板监控mysql数据库

    zabbix利用自带的模板监控mysql数据库 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 有些东西你不会的时候觉得它特别难,但是当你去做的时候就发现如此的简单~zabbix功能 ...

  10. ASCII码表(二进制 十进制 十六进制)

    css里,允许使用转义字符\+ascii16进制形式; 例如: e的ascii 16进制是65,我们就写为\65 expression -> expr\65ssion 二进制 十进制 十六进制 ...