Time Limit: 5 Seconds Memory Limit: 32768 KB Special Judge

Network of Byteland consists of n servers, connected by m optical cables. Each cable connects two servers and can transmit data in both directions. Two servers of the network are especially important — they are connected to global world network and president palace network respectively.

The server connected to the president palace network has number 1, and the server connected to the global world network has number n.

Recently the company Max Traffic has decided to take control over some cables so that it could see what data is transmitted by the president palace users. Of course they want to control such set of cables, that it is impossible to download any data from the global network to the president palace without transmitting it over at least one of the cables from the set.

To put its plans into practice the company needs to buy corresponding cables from their current owners. Each cable has some cost. Since the company’s main business is not spying, but providing internet connection to home users, its management wants to make the operation a good investment. So it wants to buy such a set of cables, that cables mean cost} is minimal possible.

That is, if the company buys k cables of the total cost c, it wants to minimize the value of c/k.

Input

There are several test cases in the input. The first line of each case contains n and m (2 <= n <= 100 , 1 <= m <= 400 ). Next m lines describe cables~— each cable is described with three integer numbers: servers it connects and the cost of the cable. Cost of each cable is positive and does not exceed 107.

Any two servers are connected by at most one cable. No cable connects a server to itself. The network is guaranteed to be connected, it is possible to transmit data from any server to any other one.

There is an empty line between each cases.

Output

First output k — the number of cables to buy. After that output the cables to buy themselves. Cables are numbered starting from one in order they are given in the input file. There should an empty line between each cases.

Example

Input

6 8

1 2 3

1 3 3

2 4 2

2 5 2

3 4 2

3 5 2

5 6 3

4 6 3

4 5

1 2 2

1 3 2

2 3 1

2 4 2

3 4 2

Output

4

3 4 5 6

3

1 2 3

Source: Andrew Stankevich’s Contest #8

在Amber写的《最小割在信息学竞赛中的应用》看到的一道例题,所以就拿来做做,但是出现了不少的问题

题意:给出一个带权的无向图,每一条边有一个权值w,求将s与t分开的一个边割集,使得边割集的平均值最小。

具体的做法可以看看AMber的论文,这里有几个疑惑

1. 为什么在DFS过程中不加引用就TLE

2. 为什么在Dinic过程中不复制就会WA

#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cmath>
#include <string>
#include <queue>
#include <stack>
#include <algorithm>
#include <iostream> using namespace std; const double eps = 1e-6; const int INF = 0x3f3f3f3f; const int MaxN = 110; const int MaxM = 51000; typedef struct Node
{
int u,v,cap;
}Point ; typedef struct node
{
int v,next; double cap;
}edge; Point a[MaxN*4]; edge e[MaxM]; int H[MaxN],Head[MaxN],top,vis[MaxN]; int n,m; double L,R; int dbcmp(double s)
{
if(fabs(s)<eps)
{
return 0;
} return s>0?1:-1;
} void AddEdge(int u,int v,double cap)
{
e[top].v =v ;e[top].cap = cap; e[top].next = H[u]; H[u] = top++;
} bool BFS()
{
memset(vis,0,sizeof(vis)); vis[1] =1; queue<int>Q; Q.push(1); while(!Q.empty())
{
int u =Q.front(); Q.pop(); for(int i = H[u];~i;i = e[i].next)
{
if(dbcmp(e[i].cap)>0&&!vis[e[i].v])
{
vis[e[i].v] = vis[u]+1; Q.push(e[i].v); if(e[i].v==n)
{
return 1;
}
}
}
} return 0;
} double DFS(int u,double cap)
{
if(u==n)
{
return cap;
}
double ans =0; for(int &i =Head[u];i!=-1; i = e[i].next) //不加引用就超时
{
if(vis[e[i].v]==vis[u]+1&&dbcmp(e[i].cap)>0)
{
double ant = DFS(e[i].v,min(cap,e[i].cap)); if(ant)
{
e[i].cap-=ant; e[i^1].cap+=ant; return ant;
}
}
}
return 0;
} double Dinic()//求最小割
{
double ans = 0; while(BFS())
{
memcpy(Head,H,sizeof(H));//不复制就WA
while(double ant = DFS(1,INF))
ans+=ant;
}
return ans;
} double Build(double s)
{
top =0; memset(H,-1,sizeof(H)); double ans = 0; for(int i=1;i<=m;i++)
{
if(a[i].cap>s)
{
AddEdge(a[i].u,a[i].v,a[i].cap-s); AddEdge(a[i].v,a[i].u,a[i].cap-s);
}
else ans += (a[i].cap-s);
} return ans+Dinic();
} double Search()
{
double mid; while(dbcmp(R-L)>0)
{
mid = (L+R)/2; double ant = Build(mid); if(dbcmp(ant)>0)
{ L = mid;
}
else
{
R = mid;
}
}
return mid;
} void dfs(int u)
{
vis[u] = 1; for(int i = H[u];i!=-1;i = e[i].next)
{
if(dbcmp(e[i].cap)>0&&!vis[e[i].v])
{
dfs(e[i].v);
}
}
} int main()
{
int z = 0; while(~scanf("%d %d",&n,&m))
{
L = 0,R = 0;
for(int i=1;i<=m;i++)
{
scanf("%d %d %d",&a[i].u,&a[i].v,&a[i].cap); R+=a[i].cap;
} double ans = Search(); Build(ans); memset(vis,0,sizeof(vis)); dfs(1); int num = 0; for(int i=1;i<=m;i++)
{
if(vis[a[i].v]+vis[a[i].u]==1||a[i].cap<ans)
{
num++;
}
} if(z++)
{
printf("\n");
} printf("%d\n",num); bool flag = false; for(int i=1;i<=m;i++)
{
if(vis[a[i].v]+vis[a[i].u]==1||a[i].cap<ans)
{
if(flag)
{
printf(" ");
}
else flag= true; printf("%d",i);
}
}
printf("\n");
}
return 0;
}

Network Wars-ZOJ2676最小割+01规划的更多相关文章

  1. POJ 1966 Cable TV Network 【经典最小割问题】

    Description n个点的无向图,问最少删掉几个点,使得图不连通 n<=50 m也许可以到完全图? Solution 最少,割点,不连通,可以想到最小割. 发现,图不连通,必然存在两个点不 ...

  2. CodeChef - RIN 最小割应用 规划问题

    题意:给定\(n\)门课和\(m\)个学期,每门课在每个学期有不同的得分,需要选定一个学期去完成,但存在约束条件,共有\(k\)对课程需要\(a\)在\(b\)开始学前学会,求最大得分(原问题是求最高 ...

  3. UVA1660 电视网络 Cable TV Network[拆点+最小割]

    题意翻译 题目大意: 给定一个n(n <= 50)个点的无向图,求它的点联通度.即最少删除多少个点,使得图不连通. 解析 网络瘤拆点最小割. 定理 最大流\(=\)最小割 感性地理解(口胡)一下 ...

  4. POJ 1966 Cable TV Network (点连通度)【最小割】

    <题目链接> 题目大意: 给定一个无向图,求点连通度,即最少去掉多少个点使得图不连通. 解题分析: 解决点连通度和边连通度的一类方法总结见   >>> 本题是求点连通度, ...

  5. ZOJ 2676 Network Wars ★(最小割算法介绍 && 01分数规划)

    [题意]给出一个带权无向图,求割集,且割集的平均边权最小. [分析] 先尝试着用更一般的形式重新叙述本问题.设向量w表示边的权值,令向量c=(1, 1, 1, --, 1)表示选边的代价,于是原问题等 ...

  6. zoj 2676 Network Wars 0-1分数规划+最小割

    题目详解出自 论文 Amber-最小割模型在信息学竞赛中的应用 题目大意: 给出一个带权无向图 G = (V,E), 每条边 e属于E都有一个权值We,求一个割边集C,使得该割边集的平均边权最小,即最 ...

  7. HDU 2676 Network Wars 01分数规划,最小割 难度:4

    http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=1676 对顶点i,j,起点s=1,终点t=n,可以认为题意要求一组01矩阵use ...

  8. zoj2676 Network Wars(0-1分数规划,最大流模板)

    Network Wars 07年胡伯涛的论文上的题:http://wenku.baidu.com/view/87ecda38376baf1ffc4fad25.html 代码: #include < ...

  9. zoj 2676 二分+ISAP模板求实型参数的最小割(0-1分数规划问题)(可做ISAP模板)

    /* 参考博文:http://www.cnblogs.com/ylfdrib/archive/2010/09/01/1814478.html 以下题解为转载代码自己写的: zoj2676 胡伯涛论文& ...

随机推荐

  1. Linux小技巧1:如何关闭Root用户SSH登陆

    新建用户 >useradd nonroot //新建用户 >passwd nonroot //创建/修改nonroot用户密码 >vim /etc/ssh/sshd_config 将 ...

  2. Mvc自定义路由让支持.html的格式

    前言 在大多时候,我们都需要自定义路由,当我们设置为/list/1.html的时候,有的时候会出现以下异常. routes.MapRoute( "category", // 路由名 ...

  3. JSP数据交互

    JSP数据交互   一.jsp中java小脚本 1.<% java代码段%> 2.<% =java表达式%>不能有分号 3.<%!成员变量和函数声明%>二.注释 1 ...

  4. 微博开放平台api使用

    前言:微博开放平台提供了微博数据的api接口,不仅可以直接通过api调用微博服务发布微博查询微博,更重要的是,可以在自己的网站上获得新浪微博api的授权,调用微博的某些内容,就好像我们再网站中看到好文 ...

  5. dynamoDb 使用

    如果写入时候结构体为: type Item struct {  DeviceId string `dynamo:"deviceid"` Play int `dynamo:" ...

  6. Linux下更改目录及其下的子目录和文件的访问权限

    想一次修改某个目录下所有文件的权限,包括子目录中的文件权限也要修改,要使用参数-R表示启动递归处理. 例如: [root@localhost ~]# chmod 777 /home/user 注:仅把 ...

  7. linux打包与压缩

    打包是指将一大堆文件或目录变成一个总的文件. 压缩则是将一个大的文件通过一些压缩算法变成一个小文件. 标注:linux文件需要先打包后才能进行压缩. tar  –cvf  test.tar  one. ...

  8. Python之路-python(css布局、JavaScript)

    CSS布局 JavaScript css布局: 后台管理界面一:(左右标签都有下来菜单) 利用position: absolute;让某个标签固定在具体位置,然后使用overflow: auto;属性 ...

  9. 偶遇到 java.util.ConcurrentModificationException 的异常

    今天在调试程序 遇到了如此问题 贴上代码来看看稍后分析 List<String> list = null;boolean isUpdate = false;try { list = JSO ...

  10. windows下搭建nginx+php+mysql环境

    一.下载需要的东西 1.nginx:http://nginx.org/en/download.html 2.php:http://php.net/downloads.php 3.mysql:(暂时先不 ...