B样条基函数的定义和性质
定义:令U={u0,u1,…,um}是一个单调不减的实数序列,即ui≤ui+1,i=0,1,…,m-1。其中,ui称为节点,U称为节点矢量,用Ni,p(u)表示第i个p次(p+1阶)B样条基函数,其定义为

由此可知:
(1)Ni,0(u)是一个阶梯函数,它在半开区间u∈[ui,ui+1)外都为零;
(2)当p>0时,Ni,p(u)是两个p-1次基函数的线性组合;
(3)计算一组基函数时需要事先制定节点矢量U和次数p;
(4)定义式中可能出现0/0,我们规定0/0=0;
(5)Ni,p(u)是定义在整个实数轴上的分段多项式函数,但我们一般只对它在区间[u0,um]上的部分感兴趣;
(6)半开区间[ui,ui+1)称为第i个节点区间(knot span),它的长度可以为零,因为相邻节点可以是相同的;
(7)计算p次基函数的生成过程生成一个如下形式的三角形阵列:

为了书写方便,我们通常将Ni,p(u)写为Ni,p。
性质:
(1)(局部支撑性)如果u∉[ui,ui+p+1),则Ni,p(u)=0。
(2)在任意给定的节点区间[uj,uj+1)内,最多p+1个Ni,p是非零的,它们是Nj-p,p,…,Nj,p。
(3)(非负性)对于所有的i,p和u,有Ni,p(u)≥0。
(4)(规范性)对于任意的节点区间[ui,ui+1),当u∈[ui,ui+1)时

(5)(可微性)在节点区间内部,Ni,p(u)是无限次可微的。
(6)除p=0的情况外,Ni,p(u)严格地达到最大值一次。
以上结论出自:《非均匀有理B样条》第2版。
B样条基函数的定义和性质的更多相关文章
- B-spline Curves 学习之B样条基函数的定义与性质(2)
B-spline Basis Functions 本博客转自前人的博客的翻译版本,前几章节是原来博主的翻译内容,但是后续章节博主不在提供翻译,后续章节我在完成相关的翻译学习. (原来博客网址:http ...
- B样条基函数的定义及系数的意义
原文链接:http://blog.csdn.net/tuqu/article/details/5177405 贝塞尔基函数用作权重.B-样条基函数也一样:但更复杂.但是它有两条贝塞尔基函数所没有的特性 ...
- B样条基函数(cubic spline basis)
B样条基函数用作权重 reference http://blog.csdn.net/tuqu
- B-spline Curves 学习之B样条基函数计算实例(3)
B-spline Basis Functions: Computation Examples 本博客转自前人的博客的翻译版本,前几章节是原来博主的翻译内容,但是后续章节博主不在提供翻译,后续章节我在完 ...
- B样条
在数学的子学科数值分析里,B-样条是样条曲线一种特殊的表示形式.它是B-样条基曲线的线性组合.B-样条是贝兹(贝塞尔)曲线的一种一般化,可以进一步推广为非均匀有理B样条(NURBS),使得我们能给更多 ...
- B样条参数曲线学习(1)
B样条参数曲线学习 Bezier曲线有许多优越性,但有两点不足: (1) 特征多边形的顶点个数决定了Bezier曲线的阶次,并且在阶次较大时,特征多边形对曲线的控制将会减弱: (2) Bezier曲线 ...
- 【C】 05 - 声明和定义
仅从形式上看,C程序就是由各种声明和定义组成的.它们是程序的骨架和外表,不仅定义了数据(变量),还定义了行为(函数).规范中的纯语言部分,声明和定义亦花去了最多的篇幅.完全说清定义的语法比较困难,这里 ...
- 非均匀B样条离散点的加密与平滑
非均匀B样条离散点的加密与平滑 离散点的预处理是点云网格化很关键的一步,主要就是离散点的平滑.孔洞修补:本文是基于非均匀B样条基函数进行离散点云的加密和平滑的,一下为初步实现结果. 算法步骤: 1.数 ...
- OpenCASCADE Conic to BSpline Curves-Circle
OpenCASCADE Conic to BSpline Curves-Circle eryar@163.com Abstract. The conic sections and circles pl ...
随机推荐
- NodeJs之Path
Path模块 NodeJs提供的Path模块,使得我们可以对文件路径进行简单的操作. API var path = require('path'); var path_str = '\\Users\\ ...
- 《Django By Example》第四章 中文 翻译 (个人学习,渣翻)
书籍出处:https://www.packtpub.com/web-development/django-example 原作者:Antonio Melé (译者注:祝大家新年快乐,这次带来<D ...
- Dapper扩展之~~~Dapper.Contrib
平台之大势何人能挡? 带着你的Net飞奔吧!http://www.cnblogs.com/dunitian/p/4822808.html#skill 上一篇文章:Dapper逆天入门~强类型,动态类型 ...
- HTML 事件(一) 事件的介绍
本篇主要介绍HTML中的事件知识:事件相关术语.DOM事件规范.事件对象. 其他事件文章 1. HTML 事件(一) 事件的介绍 2. HTML 事件(二) 事件的注册与注销 3. HTML 事件(三 ...
- 实例操作JSONP原理
絮语:按这个步骤走,你就会明白JSONP是什么鬼. 1.工程目录: ng-mywork demo.html test.js 2.nginx的server配置 server { listen ; ser ...
- CentOS7 重置root密码
1- 在启动grub菜单,选择编辑选项启动 2 - 按键盘e键,来进入编辑界面 3 - 找到Linux 16的那一行,将ro改为rw init=/sysroot/bin/sh 4 - 现在按下 Con ...
- [C#] 进阶 - LINQ 标准查询操作概述
LINQ 标准查询操作概述 序 “标准查询运算符”是组成语言集成查询 (LINQ) 模式的方法.大多数这些方法都在序列上运行,其中的序列是一个对象,其类型实现了IEnumerable<T> ...
- FFmpeg 中AVPacket的使用
AVPacket保存的是解码前的数据,也就是压缩后的数据.该结构本身不直接包含数据,其有一个指向数据域的指针,FFmpeg中很多的数据结构都使用这种方法来管理数据. AVPacket的使用通常离不开下 ...
- python 数据类型 ---文件一
1.文件的操作流程: 打开(open), 操作(read,write), 关闭(close) 下面分别用三种方式打开文件,r,w,a 模式 . "a"模式将不会覆盖原来的文件内容, ...
- BAT“搅局”B2B市场,CIO们准备好了吗?
"CIO必须灵活构建其所在企业的IT系统,深入业务,以应对日新月异的数字化业务环境." BAT军团"搅局"B2B市场,CIO们准备好了吗? 庞大的企业级市场 ...