B样条基函数的定义和性质
定义:令U={u0,u1,…,um}是一个单调不减的实数序列,即ui≤ui+1,i=0,1,…,m-1。其中,ui称为节点,U称为节点矢量,用Ni,p(u)表示第i个p次(p+1阶)B样条基函数,其定义为

由此可知:
(1)Ni,0(u)是一个阶梯函数,它在半开区间u∈[ui,ui+1)外都为零;
(2)当p>0时,Ni,p(u)是两个p-1次基函数的线性组合;
(3)计算一组基函数时需要事先制定节点矢量U和次数p;
(4)定义式中可能出现0/0,我们规定0/0=0;
(5)Ni,p(u)是定义在整个实数轴上的分段多项式函数,但我们一般只对它在区间[u0,um]上的部分感兴趣;
(6)半开区间[ui,ui+1)称为第i个节点区间(knot span),它的长度可以为零,因为相邻节点可以是相同的;
(7)计算p次基函数的生成过程生成一个如下形式的三角形阵列:

为了书写方便,我们通常将Ni,p(u)写为Ni,p。
性质:
(1)(局部支撑性)如果u∉[ui,ui+p+1),则Ni,p(u)=0。
(2)在任意给定的节点区间[uj,uj+1)内,最多p+1个Ni,p是非零的,它们是Nj-p,p,…,Nj,p。
(3)(非负性)对于所有的i,p和u,有Ni,p(u)≥0。
(4)(规范性)对于任意的节点区间[ui,ui+1),当u∈[ui,ui+1)时

(5)(可微性)在节点区间内部,Ni,p(u)是无限次可微的。
(6)除p=0的情况外,Ni,p(u)严格地达到最大值一次。
以上结论出自:《非均匀有理B样条》第2版。
B样条基函数的定义和性质的更多相关文章
- B-spline Curves 学习之B样条基函数的定义与性质(2)
B-spline Basis Functions 本博客转自前人的博客的翻译版本,前几章节是原来博主的翻译内容,但是后续章节博主不在提供翻译,后续章节我在完成相关的翻译学习. (原来博客网址:http ...
- B样条基函数的定义及系数的意义
原文链接:http://blog.csdn.net/tuqu/article/details/5177405 贝塞尔基函数用作权重.B-样条基函数也一样:但更复杂.但是它有两条贝塞尔基函数所没有的特性 ...
- B样条基函数(cubic spline basis)
B样条基函数用作权重 reference http://blog.csdn.net/tuqu
- B-spline Curves 学习之B样条基函数计算实例(3)
B-spline Basis Functions: Computation Examples 本博客转自前人的博客的翻译版本,前几章节是原来博主的翻译内容,但是后续章节博主不在提供翻译,后续章节我在完 ...
- B样条
在数学的子学科数值分析里,B-样条是样条曲线一种特殊的表示形式.它是B-样条基曲线的线性组合.B-样条是贝兹(贝塞尔)曲线的一种一般化,可以进一步推广为非均匀有理B样条(NURBS),使得我们能给更多 ...
- B样条参数曲线学习(1)
B样条参数曲线学习 Bezier曲线有许多优越性,但有两点不足: (1) 特征多边形的顶点个数决定了Bezier曲线的阶次,并且在阶次较大时,特征多边形对曲线的控制将会减弱: (2) Bezier曲线 ...
- 【C】 05 - 声明和定义
仅从形式上看,C程序就是由各种声明和定义组成的.它们是程序的骨架和外表,不仅定义了数据(变量),还定义了行为(函数).规范中的纯语言部分,声明和定义亦花去了最多的篇幅.完全说清定义的语法比较困难,这里 ...
- 非均匀B样条离散点的加密与平滑
非均匀B样条离散点的加密与平滑 离散点的预处理是点云网格化很关键的一步,主要就是离散点的平滑.孔洞修补:本文是基于非均匀B样条基函数进行离散点云的加密和平滑的,一下为初步实现结果. 算法步骤: 1.数 ...
- OpenCASCADE Conic to BSpline Curves-Circle
OpenCASCADE Conic to BSpline Curves-Circle eryar@163.com Abstract. The conic sections and circles pl ...
随机推荐
- opencv在图像显示中文
在图像定位和模式识别时,经常需要把结果标注到图片上,标注内容可以是数字字母.矩形框等(opencv支持的)或者是中文汉字(借助freetype). 1.显示数字/矩形框 #include <op ...
- RxJS + Redux + React = Amazing!(译一)
今天,我将Youtube上的<RxJS + Redux + React = Amazing!>翻译(+机译)了下来,以供国内的同学学习,英文听力好的同学可以直接看原版视频: https:/ ...
- 关于如何提高Web服务端并发效率的异步编程技术
最近我研究技术的一个重点是java的多线程开发,在我早期学习java的时候,很多书上把java的多线程开发标榜为简单易用,这个简单易用是以C语言作为参照的,不过我也没有使用过C语言开发过多线程,我只知 ...
- Java数据库连接技术——JDBC
大家好,今天我们学习了Java如何连接数据库.之前学过.net语言的数据库操作,感觉就是一通百通,大同小异. JDBC是Java数据库连接技术的简称,提供连接各种常用数据库的能力. JDBC API ...
- 【.net 深呼吸】程序集的热更新
当一个程序集被加载使用的时候,出于数据的完整性和安全性考虑,程序集文件(在99.9998%的情况下是.dll文件)会被锁定,如果此时你想更新程序集(实际上是替换dll文件),是不可以操作的,这时你得把 ...
- 百度 flash html5自切换 多文件异步上传控件webuploader基本用法
双核浏览器下在chrome内核中使用uploadify总有302问题,也不知道如何修复,之所以喜欢360浏览器是因为帮客户控制渲染内核: 若页面需默认用极速核,增加标签:<meta name=& ...
- Dreamweaver 扩展开发:C-level extensibility and the JavaScript interpreter
The C code in your library must interact with the Dreamweaver JavaScript interpreter at the followin ...
- [WCF]缺少一行代码引发的血案
这是今天作项目支持的发现的一个关于WCF的问题,虽然最终我只是添加了一行代码就解决了这个问题,但是整个纠错过程是痛苦的,甚至最终发现这个问题都具有偶然性.具体来说,这是一个关于如何自动为服务接口(契约 ...
- ASP.NET Core 1.0 开发记录
官方资料: https://github.com/dotnet/core https://docs.microsoft.com/en-us/aspnet/core https://docs.micro ...
- UVA, 10336 Rank the Languages
难点在于:递归函数和输出: #include <iostream> #include <vector> #include <algorithm> #include ...