题目描述

链接

如题,已知一棵包含N个结点的树(连通且无环),每个节点上包含一个数值,需要支持以下操作:

操作1: 格式: 1 x y z 表示将树从x到y结点最短路径上所有节点的值都加上z

操作2: 格式: 2 x y 表示求树从x到y结点最短路径上所有节点的值之和

操作3: 格式: 3 x z 表示将以x为根节点的子树内所有节点值都加上z

操作4: 格式: 4 x 表示求以x为根节点的子树内所有节点值之和

解决方法

用链式前向星的方式保存树,两次DFS将树剖分成若干重链和轻链,套用线段树进行更新和查询,对子树的操作可以转化成连续节点间的操作(因为DFS时子树节点的编号也是连续的),注意取模和开$long \ \ long$.

而且单独$add$标记时是不用下推的,只需查询时累加即可(不知道为什么那些题解都用下推的)

 #include<bits/stdc++.h>
using namespace std; typedef long long ll;
#define lc o <<1
#define rc o <<1 | 1
//const ll INF = 0x3f3f3f3f;
const int maxn = + ;
struct Edge
{
int to, next;
}edges[*maxn];
int head[maxn];
int cur, f[maxn], deep[maxn], size[maxn], son[maxn], rk[maxn], id[maxn], top[maxn], cnt;
int n, q, w[maxn], root, mod; inline void addedge(int u, int v)
{
++cur;
edges[cur].next = head[u];
head[u] = cur;
edges[cur].to = v;
} struct SegTree{
ll sum[maxn << ], addv[maxn << ];
void build(int o, int l, int r)
{
if(l == r)
{
sum[o] = w[rk[l]] % mod;
}
else
{
int mid = (l + r) >> ;
build(lc, l, mid);
build(rc, mid+, r);
sum[o] = (sum[lc] + sum[rc]) % mod;
}
} void maintain(int o, int l, int r)
{
if(l == r) //如果是叶子结点
sum[o] = w[rk[l]] % mod;
else //如果是非叶子结点
sum[o] = (sum[lc] + sum[rc]) % mod; sum[o] = (sum[o] + addv[o] * (r-l+)) % mod;
}
//区间修改,[cl,cr] += v;
void update(int o, int l, int r, int cl, int cr, int v) //
{
if(cl <= l && r <= cr) addv[o] = (addv[o] + v) % mod;
else
{
int m = l + (r-l) /;
if(cl <= m) update(lc, l, m, cl, cr, v);
if(cr > m) update(rc, m+, r, cl, cr, v);
}
maintain(o, l, r);
} //区间查询,sum{ql,qr}
ll query(int o, int l,int r, ll add, int ql, int qr)
{
if(ql <= l && r <= qr)
{
//prllf("sum[o]:%d %d*(%d-%d+1)\n", sum[o], add, r, l);
return (sum[o] + add * (r-l+)) % mod; //tx l-r+1
}
else
{
int m = l + (r - l) / ;
ll ans = ;
add = (add + addv[o]) % mod;
if(ql <= m) ans = (ans + query(lc, l, m, add, ql, qr)) % mod;
if(qr > m) ans = (ans + query(rc, m+, r, add, ql, qr)) % mod;
return ans;
}
}
}st; void dfs1(int u, int fa, int depth) //当前节点、父节点、层次深度
{
//prllf("u:%d fa:%d depth:%d\n", u, fa, depth);
f[u] = fa;
deep[u] = depth;
size[u] = ; //这个点本身的size
for(int i = head[u];i;i = edges[i].next)
{
int v = edges[i].to;
if(v == fa) continue;
dfs1(v, u, depth+);
size[u] += size[v]; //子节点的size已被处理,用它来更新父节点的size
if(size[v] > size[son[u]]) son[u] = v; //选取size最大的作为重儿子
}
} void dfs2(int u, int t) //当前节点、重链顶端
{
//prllf("u:%d t:%d\n", u, t);
top[u] = t;
id[u] = ++cnt; //标记dfs序
rk[cnt] = u; //序号cnt对应节点u
if(!son[u]) return; //没有儿子?
dfs2(son[u], t); //我们选择优先进入重儿子来保证一条重链上各个节点dfs序连续 for(int i = head[u];i;i = edges[i].next)
{
int v = edges[i].to;
if(v != son[u] && v != f[u]) dfs2(v, v); //这个点位于轻链顶端,那么它的top必然为它本身
}
} /*修改和查询的原理是一致的,以查询操作为例,其实就是个LCA,不过这里要使用top数组加速,因为top可以直接跳到该重链的起始顶点*/
/*注意,每次循环只能跳一次,并且让结点深的那个跳到top的位置,避免两者一起跳而插肩而过*/
ll querysum(int x, int y)
{
int fx = top[x], fy = top[y];
ll ans = ;
while(fx != fy) //当两者不在同一条重链上
{
if(deep[fx] >= deep[fy])
{
//prllf("%d %d\n", id[fx], id[x]);
ans = (ans + st.query(, , n, , id[fx], id[x])) % mod; //线段树区间求和,计算这条重链的贡献
x = f[fx]; fx = top[x];
}
else
{
//prllf("%d %d\n", id[fy], id[y]);
ans = (ans + st.query(, , n, , id[fy], id[y])) % mod;
y = f[fy]; fy = top[y];
}
} //循环结束,两点位于同一重链上,但两者不一定为同一点,所以还要加上这两点之间的贡献
if(id[x] <= id[y])
{
//prllf("%d %d\n", id[x], id[y]);
ans = (ans + st.query(, , n, , id[x], id[y])) % mod;
}
else
{
//prllf("%d %d\n", id[y], id[x]);
ans = (ans + st.query(, , n, , id[y], id[x])) % mod;
}
return ans;
} void update_add(int x, int y, int add)
{
int fx = top[x], fy = top[y];
while(fx != fy) //当两者不在同一条重链上
{
if(deep[fx] >= deep[fy])
{
st.update(, , n, id[fx], id[x], add);
x = f[fx]; fx = top[x];
}
else
{
st.update(, , n, id[fy], id[y], add);
y = f[fy]; fy = top[y];
}
}
//循环结束,两点位于同一重链上,但两者不一定为同一点,所以还要加上这两点之间的贡献
if(id[x] <= id[y]) st.update(, , n, id[x], id[y], add);
else st.update(, , n, id[y], id[x], add);
} int main()
{
scanf("%d%d%d%d", &n, &q, &root, &mod);
for(int i = ;i <= n;i++)
{
scanf("%d", &w[i]);
w[i] %= mod;
}
for(int i = ;i < n;i++)
{
int u, v;
scanf("%d%d", &u, &v);
addedge(u, v);
addedge(v, u);
}
dfs1(root, -, );
dfs2(root, root); // for(ll i = 1;i <= n;i++) prllf("%d ", id[i]);
// prllf("\n");
// for(ll i = 1;i <= n;i++) prllf("%d ", rk[i]);
// prllf("\n"); st.build(, , n);
//scanf("%d", &q);
while(q--)
{
int op;
scanf("%d", &op);
if(op == )
{
int u, v, add;
scanf("%d%d%d", &u, &v, &add);
update_add(u, v, add);
}
else if(op == )
{
int u, v;
scanf("%d%d", &u, &v);
printf("%lld\n", querysum(u, v));
}
else if(op == )
{
int u, add;
scanf("%d%d", &u, &add);
st.update(, , n, id[u], id[u]+size[u]-, add);
}
else
{
int u;
scanf("%d", &u);
printf("%lld\n",st.query(, , n, , id[u], id[u]+size[u]-));
}
//st.prll_debug(1, 1, n);
}
}

P3384——树链剖分&&模板的更多相关文章

  1. 洛谷 P3384 树链剖分(模板题)

    题目描述 如题,已知一棵包含N个结点的树(连通且无环),每个节点上包含一个数值,需要支持以下操作: 操作1: 格式: 1 x y z 表示将树从x到y结点最短路径上所有节点的值都加上z 操作2: 格式 ...

  2. BZOJ 2243 染色 | 树链剖分模板题进阶版

    BZOJ 2243 染色 | 树链剖分模板题进阶版 这道题呢~就是个带区间修改的树链剖分~ 如何区间修改?跟树链剖分的区间询问一个道理,再加上线段树的区间修改就好了. 这道题要注意的是,无论是线段树上 ...

  3. 算法复习——树链剖分模板(bzoj1036)

    题目: 题目背景 ZJOI2008 DAY1 T4 题目描述 一棵树上有 n 个节点,编号分别为 1 到 n ,每个节点都有一个权值 w .我们将以下面的形式来要求你对这棵树完成一些操作:I.CHAN ...

  4. Hdu 5274 Dylans loves tree (树链剖分模板)

    Hdu 5274 Dylans loves tree (树链剖分模板) 题目传送门 #include <queue> #include <cmath> #include < ...

  5. 【Luogu P3384】树链剖分模板

    树链剖分的基本思想是把一棵树剖分成若干条链,再利用线段树等数据结构维护相关数据,可以非常暴力优雅地解决很多问题. 树链剖分中的几个基本概念: 重儿子:对于当前节点的所有儿子中,子树大小最大的一个儿子就 ...

  6. bzoj1036 [ZJOI2008]树的统计Count 树链剖分模板题

    [ZJOI2008]树的统计Count Description 一棵树上有n个节点,编号分别为1到n,每个节点都有一个权值w.我们将以下面的形式来要求你对这棵树完成 一些操作: I. CHANGE u ...

  7. 洛谷P3384 树链剖分

    如题,已知一棵包含N个结点的树(连通且无环),每个节点上包含一个数值,需要支持以下操作: 操作1: 格式: 1 x y z 表示将树从x到y结点最短路径上所有节点的值都加上z 操作2: 格式: 2 x ...

  8. BZOJ 1036 树的统计Count 树链剖分模板题

    题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=1036 题目大意: 一棵树上有n个节点,编号分别为1到n,每个节点都有一个权值w.我们将 ...

  9. BZOJ 1036 [ZJOI2008]树的统计Count | 树链剖分模板

    原题链接 树链剖分的模板题:在点带权树树上维护路径和,最大值和单点修改 这里给出几个定义 以任意点为根,然后记 size (u ) 为以 u 为根的子树的结点个数,令 v 为 u 所有儿子中 size ...

随机推荐

  1. c# 所有类型都是从object继承,那么值类型默认也有装箱吗?

    我们知道,c#所有类型都是从System.Object继承,int等值类型也逃脱不了这种命运,那难道值类型默认有装箱操作吗?答案是否,在CLR via这本书中有简短的解释说明: 1.值类型从Syste ...

  2. 【Python】【demo实验35】【基础实验】【排序】【选择法排序】

    原题: 使用选择法对10个数字排序: 即取10个数中最小的放在第一个位置,再取剩下9个中最小的放在第二个位置... 我的源码: #!/usr/bin/python # encoding=utf-8 # ...

  3. 打印 request 请求中的参数

    @SuppressWarnings({"rawtypes"})private void showParams(HttpServletRequest request) { Map&l ...

  4. npm添加代理和取消代理

    1.设置http代理 npm config set proxy=http://代理服务器地址:8080 2.取消代理 npm config delete proxy 3.npm设置淘宝镜像 npm c ...

  5. LeetCode. 矩阵中的最长递增路径

    题目要求: 给定一个整数矩阵,找出最长递增路径的长度. 对于每个单元格,你可以往上,下,左,右四个方向移动. 你不能在对角线方向上移动或移动到边界外(即不允许环绕). 示例: 输入: nums = [ ...

  6. unittest参数化(paramunittest)

    前言 paramunittest是unittest实现参数化的一个专门的模块,可以传入多组参数,自动生成多个用例前面讲数据驱动的时候,用ddt可以解决多组数据传入,自动生成多个测试用例.本篇继续介绍另 ...

  7. 后端排序,debug模式中map的顺序出错

    js中map遍历的顺序是按照插入的顺序来执行的.如果map的来源是字符串转换的,那么就会按照字符串中key值的顺序进行遍历.千万不要被debug中显示的顺序误导,这里应该是为了方便查看对key进行了字 ...

  8. 巧妙记忆 ++i 和 i++ 的区别

    区别在于: i++先做别的事,再自己加1, ++i先自己加1,再做别的事情, 形象的理解,你可以把 ++i比作自私的人,首先考虑自己的事, i++是无私的,先为别人照想,这样方便记忆. 示例: a = ...

  9. paramiko模块实现远程传输控制

    一.什么是paramiko呢? paramiko是一个用于做远程控制的模块,使用该模块可以对远程服务器进行命令或文件操作,值得一说的是,fabric和ansible内部的远程管理就是使用的parami ...

  10. docker 第五篇 存储

    镜像概述复习 Docker镜像由多个只读层叠加而成,启动容器时,Docker会加载只读镜像层并在镜像栈顶部添加一个读写层 如果运行中的容器修改了现有的一个已经存在的文件,那改文件将会从读写层下面的只读 ...