题解 [APIO2014]连珠线
题解 [APIO2014]连珠线
题面
解析
首先这连成的是一棵树啊.
并且\(yy\)一下,如果钦定一个根,
那么这上面的蓝线都是爸爸->儿子->孙子这样的,因为像下图这样的构造不出来:
(兄弟到兄弟的特殊情况不用考虑,因为会在一个端点作为根的情况考虑的)
那么首先还是来简单的写法,
设\(f[i][0/1]\)表示\(i\)是否为一根蓝线的中点的最大分数,
也可以理解为从\(i\)的一个儿子到\(i\)在上去还有没有蓝线.
并且,\(f[i][1]\)要算上它到父亲的边权.
然后再设\(c[i]\)=\(\max(f[i][0],f[i][1])\),
主要是懒得写
那么\(f[i][0]=\sum_{k=son[i]}c[k]\),
而\(f[i][1]=f[i][0]+\max(f[k][0]+w[k]-c[k])\),
其中\(w[k]\)表示\(k\)到父亲的边权(也就是i到k)
跑\(n\)遍dfs即可.
但这显然可以换根DP啊.
设\(dp[i]\)表示以\(i\)为根的最大分数,
\(v[i]\)表示\(i\)的父亲作为一条蓝边的中点,而\(i\)是一个端点的分数,并且也要再算上\(fa\)到\(i\)这条边.
(可以理解为f[fa][1]伸出去的那条边到了\(i\)这里)
那么有\(dp[i]=f[i][0]+max(dp[fa]-c[i],v[i])\)
就是\(i\)子树里的贡献加上父亲的贡献.
而父亲的贡献要么是不连边(\(dp[fa]-c[i]\)),要么就连边(v[i]).
(把\(f[i][0]\)式子里的\(c[k]\)换成\(c\)的定义就会发现很像)
然后考虑怎么求\(v\).
这里我们是用父亲去求儿子,
也就是当前是\(i\)时,我们考虑求\(i\)的儿子\(k\)(们)的\(v[k]\).
首先\(k\)是一个端点,那么我们要在\(i\)的儿子里再找出一个端点,
这里我们记一个\(mx1\)代表更新\(f[x][1]\)时后面那一串max(f[k][0]+w[k]-c[k])
的最大值,
\(mx2\)表示次大值,\(id\)表示值为\(mx1\)的\(k\).
然后在求\(v[k]\)时,我们就有:
\(v[k]=dp[i]-c[k]+mx1+w[i]\),\(k\not=id\)
这时我们可以直接拿最大值来贡献到\(k\)
\(v[k]=dp[i]-c[k]+mx2+w[i]\),\(k=id\)
因为\(k\)已经是最大值的端点了,所以只能拿次大值来更新.
注意,\(mx1\)和\(mx2\)都要算上父亲!!!
显然父亲也会有贡献.
而父亲的贡献是dp[fa]-c[x]+w[i]-max(dp[fa]-c[x],v[x])
其实和上面的式子的结构是一样的(\(dp[fa]-c[x]\)就是\(f[k][0]\),\(\max(dp[fa]-c[x],v[x])\)就是\(c\))
然后就没有然后了
code:
#include <iostream>
#include <cstdio>
#include <cstring>
#define int long long
using namespace std;
inline int read(){
int sum=0,f=1;char c=getchar();
while(c>'9'||c<'0'){if(c=='-') f=-1;c=getchar();}
while(c<='9'&&c>='0'){sum=(sum<<3)+(sum<<1)+c-'0';c=getchar();}
return sum*f;
}
const int N=200005;
const int INF=1e18;
struct edge{int to,next,w;}e[N<<1];
struct node{int mx1,mx2,id;}a[N];
int n;
int f[N][2],c[N],v[N],dp[N];
int head[N],cnt=0;
inline void add(int x,int y,int w){
e[++cnt]=(edge){head[x],y,w};head[x]=cnt;
}
inline void dfs(int x,int fa){
int ok=0;
for(int i=head[x];i;i=e[i].to){
int k=e[i].next;
if(k==fa) continue;
f[k][1]+=e[i].w;
dfs(k,x);ok=1;
f[x][0]+=c[k];
if(f[k][0]+e[i].w-c[k]>a[x].mx1)
a[x].mx2=a[x].mx1,a[x].mx1=f[k][0]+e[i].w-c[k],a[x].id=k;
else if(f[k][0]+e[i].w-c[k]>a[x].mx2)
a[x].mx2=f[k][0]+e[i].w-c[k];
}
f[x][1]+=f[x][0]+a[x].mx1;
if(!ok) f[x][1]=-INF;
c[x]=max(f[x][0],f[x][1]);
}
inline void dfs1(int x,int fa){
dp[x]=f[x][0]+max(dp[fa]-c[x],v[x]);
for(int i=head[x];i;i=e[i].to){
int k=e[i].next;
if(k==fa) continue;
if(k==a[x].id) v[k]=dp[x]-c[k]+a[x].mx2+e[i].w;
else v[k]=dp[x]-c[k]+a[x].mx1+e[i].w;
int ret=dp[x]-c[k]+e[i].w-max(dp[x]-c[k],v[k]);
if(ret>a[k].mx1) a[k].mx2=a[k].mx1,a[k].mx1=ret,a[k].id=x;
else if(ret>a[k].mx2) a[k].mx2=ret;
dfs1(k,x);
}
}
signed main(){
n=read();
for(int i=1;i<n;i++){
int x=read(),y=read(),w=read();
add(x,y,w);add(y,x,w);
}
for(int i=1;i<=n;i++) a[i].mx1=a[i].mx2=-INF;
dfs(1,0);dfs1(1,0);
int ans=0;
for(int i=1;i<=n;i++) ans=max(ans,dp[i]);
printf("%lld\n",ans);
return 0;
}
题解 [APIO2014]连珠线的更多相关文章
- 【BZOJ3677】[Apio2014]连珠线 换根DP
[BZOJ3677][Apio2014]连珠线 Description 在列奥纳多·达·芬奇时期,有一个流行的童年游戏,叫做“连珠线”.不出所料,玩这个游戏只需要珠子和线,珠子从1到礼编号,线分为红色 ...
- 【LG3647】[APIO2014]连珠线
[LG3647][APIO2014]连珠线 题面 洛谷 题解 首先考虑一下蓝线连起来的情况,一定是儿子-父亲-另一个儿子或者是儿子-父亲-父亲的父亲. 而因为一开始只有一个点在当前局面上,将一条红边变 ...
- [Bzoj3677][Apio2014]连珠线(树形dp)
3677: [Apio2014]连珠线 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 434 Solved: 270[Submit][Status] ...
- bzoj3677: [Apio2014]连珠线
Description 在列奥纳多·达·芬奇时期,有一个流行的童年游戏,叫做“连珠线”.不出所料,玩这个游戏只需要珠子和线,珠子从1到礼编号,线分为红色和蓝色.游戏 开始时,只有1个珠子,而接下来新的 ...
- APIO2014 连珠线
题目链接:戳我 换根DP 由于蒟蒻不会做这个题,所以参考了大佬. 本来想的是有三种情况,一种是该节点不作为两个蓝线的中点(我们称这种不是关键节点),一种是该节点作为关键点.连两个子节点,一种是作为关键 ...
- 并不对劲的bzoj3677:p3647:[APIO2014]连珠线
题目大意 有一种生成\(n\)个点的树的方法为: 一开始有一个点,\(n-1\)次操作,每次可以有两种操作:1.选一个点,用一条红边将它与新点连接:2.将新点放在一条红边上,新点与这条红边两端点直接的 ...
- bzoj 3677: [Apio2014]连珠线【树形dp】
参考:http://www.cnblogs.com/mmlz/p/4456547.html 枚举根,然后做树形dp,设f[i][1]为i是蓝线中点(蓝线一定是父子孙三代),f[i][0]为不是,转移很 ...
- Luogu P3647 [APIO2014]连珠线
题目 换根dp. 显然对于给定的一棵有根树,蓝线都不能拐弯. 设\(f_{u,0}\)表示\(u\)不是蓝线中点时子树内的答案,\(f_{u,1}\)表示\(u\)是蓝线中点时子树内的答案.(以\(1 ...
- 洛谷$P3647\ [APIO2014]$连珠线 换根$dp$
正解:换根$dp$ 解题报告: 传送门! 谁能想到$9102$年了$gql$居然还没写过换根$dp$呢,,,$/kel$ 考虑固定了从哪个点开始之后,以这个点作为根,蓝线只可能是直上直下的,形如&qu ...
随机推荐
- 【最后一战】NOI2019游记
NOI2019 游记 报到日 -1 打了一场LOJ发现rk5,听完cy讲T1后感觉自己非常智障--AK的那位老哥好强啊qwq 窝在宾馆里打打游戏敲敲板子 饥荒真好玩 等着明天去报道 要退役了反而心情平 ...
- 1263: 你会做蛋糕吗?(Java)
WUSTOJ 1263: 你会做蛋糕吗? 参考博客 Mitsuha_的博客 Description BobLee是个大吃货,喜欢吃好吃的,也喜欢做好吃的.比如做正方形的蛋糕.比如下图这个5*5的蛋糕. ...
- python之文件读写操作笔记
对不同类的文件操作,需要调用相关的库文件,一般情况下,可以选择建立:写文件函数和读文件函数.在写文件与读文件函数中 我们可以采用:with open('文件名','w', encoding='utf ...
- c++学习---迭代器
迭代器类型: begin和end的返回值的类型由对象是否为常量所决定 无论对象是都为常量,cbegin和cend都将都到一个const_iterator
- THUPC2019/CTS2019/APIO2019游记
Day -? 居然还能报上thupc,我在队里唯一的作用大约是cfrating稍微高点方便过审.另外两位是lz和xyy. Day -2 我夫人生日! Day -1 lz和xyy的家长都来了带我飞.住在 ...
- ( 十二)Json的使用(上)
一.什么是JSON 1.1 javaScript中定义对象的几种方式 使用内置对象 自定义对象构造 使用JSON符号 (1)使用内置对象 JavaScript可用的内置对象可分为两种: 1,Java ...
- .net core partial view的一些心得
原文:.net core partial view的一些心得 版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog. ...
- MyEclipse j2ee工程 WEB-INF 目录内容显示
公司项目,使用的ant打包技术,,,蛋疼刚开始以为每次改个java代码都要ant 构建编译一把3-4分钟,很没有效率,, 然后实际使用中发下,可以用 auto building 和tomcat 的re ...
- 关于困惑已久的var self=this的解释
首先说下this这个对象的由来(属于个人理解):每个函数在定义被ECMAScript解析器解析时,都会创建两个特殊的变量:this和arguments,换句话说,每个函数都有属于自己的this对象,这 ...
- [NOIP2018模拟赛10.22]咕咕报告
闲扯 这是篇咕咕了的博客 考场上码完暴力后不知道干什么,然后忽然发现这个T1好像有点像一道雅礼集训时讲过的CF题目 Rest In Shades ,当时那道题还想了挺久不过思路比较妙,于是我就也\(y ...