题解 [APIO2014]连珠线
题解 [APIO2014]连珠线
题面
解析
首先这连成的是一棵树啊.
并且\(yy\)一下,如果钦定一个根,
那么这上面的蓝线都是爸爸->儿子->孙子这样的,因为像下图这样的构造不出来:

(兄弟到兄弟的特殊情况不用考虑,因为会在一个端点作为根的情况考虑的)
那么首先还是来简单的写法,
设\(f[i][0/1]\)表示\(i\)是否为一根蓝线的中点的最大分数,
也可以理解为从\(i\)的一个儿子到\(i\)在上去还有没有蓝线.
并且,\(f[i][1]\)要算上它到父亲的边权.
然后再设\(c[i]\)=\(\max(f[i][0],f[i][1])\),
主要是懒得写
那么\(f[i][0]=\sum_{k=son[i]}c[k]\),
而\(f[i][1]=f[i][0]+\max(f[k][0]+w[k]-c[k])\),
其中\(w[k]\)表示\(k\)到父亲的边权(也就是i到k)
跑\(n\)遍dfs即可.
但这显然可以换根DP啊.
设\(dp[i]\)表示以\(i\)为根的最大分数,
\(v[i]\)表示\(i\)的父亲作为一条蓝边的中点,而\(i\)是一个端点的分数,并且也要再算上\(fa\)到\(i\)这条边.
(可以理解为f[fa][1]伸出去的那条边到了\(i\)这里)
那么有\(dp[i]=f[i][0]+max(dp[fa]-c[i],v[i])\)
就是\(i\)子树里的贡献加上父亲的贡献.
而父亲的贡献要么是不连边(\(dp[fa]-c[i]\)),要么就连边(v[i]).
(把\(f[i][0]\)式子里的\(c[k]\)换成\(c\)的定义就会发现很像)
然后考虑怎么求\(v\).
这里我们是用父亲去求儿子,
也就是当前是\(i\)时,我们考虑求\(i\)的儿子\(k\)(们)的\(v[k]\).
首先\(k\)是一个端点,那么我们要在\(i\)的儿子里再找出一个端点,
这里我们记一个\(mx1\)代表更新\(f[x][1]\)时后面那一串max(f[k][0]+w[k]-c[k])的最大值,
\(mx2\)表示次大值,\(id\)表示值为\(mx1\)的\(k\).
然后在求\(v[k]\)时,我们就有:
\(v[k]=dp[i]-c[k]+mx1+w[i]\),\(k\not=id\)
这时我们可以直接拿最大值来贡献到\(k\)
\(v[k]=dp[i]-c[k]+mx2+w[i]\),\(k=id\)
因为\(k\)已经是最大值的端点了,所以只能拿次大值来更新.
注意,\(mx1\)和\(mx2\)都要算上父亲!!!
显然父亲也会有贡献.
而父亲的贡献是dp[fa]-c[x]+w[i]-max(dp[fa]-c[x],v[x])
其实和上面的式子的结构是一样的(\(dp[fa]-c[x]\)就是\(f[k][0]\),\(\max(dp[fa]-c[x],v[x])\)就是\(c\))
然后就没有然后了
code:
#include <iostream>
#include <cstdio>
#include <cstring>
#define int long long
using namespace std;
inline int read(){
int sum=0,f=1;char c=getchar();
while(c>'9'||c<'0'){if(c=='-') f=-1;c=getchar();}
while(c<='9'&&c>='0'){sum=(sum<<3)+(sum<<1)+c-'0';c=getchar();}
return sum*f;
}
const int N=200005;
const int INF=1e18;
struct edge{int to,next,w;}e[N<<1];
struct node{int mx1,mx2,id;}a[N];
int n;
int f[N][2],c[N],v[N],dp[N];
int head[N],cnt=0;
inline void add(int x,int y,int w){
e[++cnt]=(edge){head[x],y,w};head[x]=cnt;
}
inline void dfs(int x,int fa){
int ok=0;
for(int i=head[x];i;i=e[i].to){
int k=e[i].next;
if(k==fa) continue;
f[k][1]+=e[i].w;
dfs(k,x);ok=1;
f[x][0]+=c[k];
if(f[k][0]+e[i].w-c[k]>a[x].mx1)
a[x].mx2=a[x].mx1,a[x].mx1=f[k][0]+e[i].w-c[k],a[x].id=k;
else if(f[k][0]+e[i].w-c[k]>a[x].mx2)
a[x].mx2=f[k][0]+e[i].w-c[k];
}
f[x][1]+=f[x][0]+a[x].mx1;
if(!ok) f[x][1]=-INF;
c[x]=max(f[x][0],f[x][1]);
}
inline void dfs1(int x,int fa){
dp[x]=f[x][0]+max(dp[fa]-c[x],v[x]);
for(int i=head[x];i;i=e[i].to){
int k=e[i].next;
if(k==fa) continue;
if(k==a[x].id) v[k]=dp[x]-c[k]+a[x].mx2+e[i].w;
else v[k]=dp[x]-c[k]+a[x].mx1+e[i].w;
int ret=dp[x]-c[k]+e[i].w-max(dp[x]-c[k],v[k]);
if(ret>a[k].mx1) a[k].mx2=a[k].mx1,a[k].mx1=ret,a[k].id=x;
else if(ret>a[k].mx2) a[k].mx2=ret;
dfs1(k,x);
}
}
signed main(){
n=read();
for(int i=1;i<n;i++){
int x=read(),y=read(),w=read();
add(x,y,w);add(y,x,w);
}
for(int i=1;i<=n;i++) a[i].mx1=a[i].mx2=-INF;
dfs(1,0);dfs1(1,0);
int ans=0;
for(int i=1;i<=n;i++) ans=max(ans,dp[i]);
printf("%lld\n",ans);
return 0;
}
题解 [APIO2014]连珠线的更多相关文章
- 【BZOJ3677】[Apio2014]连珠线 换根DP
[BZOJ3677][Apio2014]连珠线 Description 在列奥纳多·达·芬奇时期,有一个流行的童年游戏,叫做“连珠线”.不出所料,玩这个游戏只需要珠子和线,珠子从1到礼编号,线分为红色 ...
- 【LG3647】[APIO2014]连珠线
[LG3647][APIO2014]连珠线 题面 洛谷 题解 首先考虑一下蓝线连起来的情况,一定是儿子-父亲-另一个儿子或者是儿子-父亲-父亲的父亲. 而因为一开始只有一个点在当前局面上,将一条红边变 ...
- [Bzoj3677][Apio2014]连珠线(树形dp)
3677: [Apio2014]连珠线 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 434 Solved: 270[Submit][Status] ...
- bzoj3677: [Apio2014]连珠线
Description 在列奥纳多·达·芬奇时期,有一个流行的童年游戏,叫做“连珠线”.不出所料,玩这个游戏只需要珠子和线,珠子从1到礼编号,线分为红色和蓝色.游戏 开始时,只有1个珠子,而接下来新的 ...
- APIO2014 连珠线
题目链接:戳我 换根DP 由于蒟蒻不会做这个题,所以参考了大佬. 本来想的是有三种情况,一种是该节点不作为两个蓝线的中点(我们称这种不是关键节点),一种是该节点作为关键点.连两个子节点,一种是作为关键 ...
- 并不对劲的bzoj3677:p3647:[APIO2014]连珠线
题目大意 有一种生成\(n\)个点的树的方法为: 一开始有一个点,\(n-1\)次操作,每次可以有两种操作:1.选一个点,用一条红边将它与新点连接:2.将新点放在一条红边上,新点与这条红边两端点直接的 ...
- bzoj 3677: [Apio2014]连珠线【树形dp】
参考:http://www.cnblogs.com/mmlz/p/4456547.html 枚举根,然后做树形dp,设f[i][1]为i是蓝线中点(蓝线一定是父子孙三代),f[i][0]为不是,转移很 ...
- Luogu P3647 [APIO2014]连珠线
题目 换根dp. 显然对于给定的一棵有根树,蓝线都不能拐弯. 设\(f_{u,0}\)表示\(u\)不是蓝线中点时子树内的答案,\(f_{u,1}\)表示\(u\)是蓝线中点时子树内的答案.(以\(1 ...
- 洛谷$P3647\ [APIO2014]$连珠线 换根$dp$
正解:换根$dp$ 解题报告: 传送门! 谁能想到$9102$年了$gql$居然还没写过换根$dp$呢,,,$/kel$ 考虑固定了从哪个点开始之后,以这个点作为根,蓝线只可能是直上直下的,形如&qu ...
随机推荐
- “无法改变的设计”——浅谈Java中的final关键字
在Java中,final关键字可以用来修饰类.变量(包括成员变量和局部变量).方法,下面从这三个方面分别说明. final方法 当一个方法被final修饰时,表明这个方法不能被子类重写. 下面程序试图 ...
- Thinking In Java 4th Chap7 复用类
复用代码的两种方法:组合和继承 组合方法:(新类中产生现有类的对象) 没什么好说的,就是调用别类的对象而已 值得一提的是一个特殊方法:toString()当需要一个String却只有对象时能够自动调用 ...
- spring cloud微服务实践一
最近在学习spring框架.其中spring cloud在微服务方面很火,所以在学习过程中,也做一些记录. 注:这一个系列的开发环境版本为 java1.8, spring boot2.x, sprin ...
- Struts2中OGNL表达式的用法
今天分享的是Struts2框架中的一种ognl表达式语言,主要分两个目标去学习 1.理解struts2传值的优先级 2.ognl与el的区别 一:ognl表达式语言简介 OGNL的全称是O ...
- QMetaEnum获取枚举元信息
QMetaEnum 类提供了一个枚举的元数据.我们可以使用该类的静态模板函数,fromType<enumerator>来获得关于某个枚举的QMetaEnum对象,然后就可以调用该类的成员函 ...
- mysql查看表结构命令,如下:
desc 表名; show columns from 表名; describe 表名; show create table 表名;
- PHP传引用赋值底层的变化
$a = 3;$b = &$a;//传引用,即地址赋值 使用xdebug_debug_zval('a');使用xdebug_debug_zval('b');运行结果为:a:(refcount= ...
- MySQL 5.7 多源复制实践
多源复制使用场景 数据分析部门会需要各个业务部门的部分数据做数据分析,这个时候就可以用到多源复制把各个主数据库的数据复制到统一的数据库中. 在从服务器进行数据汇总,如果我们的主服务器进行了分库分表的操 ...
- (九)Activitivi5之使用 RuntimeService 设置和获取流程变量
一.案例 /** * 设置流程变量数据 */ @Test public void setVariableValues(){ RuntimeService runtimeService=processE ...
- Java Web 深入分析(2) DNS
DNS :Domain Name System,域名系统 ,通俗的来说需要把我们日常见到的URL 网址信息解析成IP地址,例如 DNS域名解析过程 用户浏览器:用户在浏览器地址栏输入域名进行访问,浏览 ...