题解 [APIO2014]连珠线
题解 [APIO2014]连珠线
题面
解析
首先这连成的是一棵树啊.
并且\(yy\)一下,如果钦定一个根,
那么这上面的蓝线都是爸爸->儿子->孙子这样的,因为像下图这样的构造不出来:
(兄弟到兄弟的特殊情况不用考虑,因为会在一个端点作为根的情况考虑的)
那么首先还是来简单的写法,
设\(f[i][0/1]\)表示\(i\)是否为一根蓝线的中点的最大分数,
也可以理解为从\(i\)的一个儿子到\(i\)在上去还有没有蓝线.
并且,\(f[i][1]\)要算上它到父亲的边权.
然后再设\(c[i]\)=\(\max(f[i][0],f[i][1])\),
主要是懒得写
那么\(f[i][0]=\sum_{k=son[i]}c[k]\),
而\(f[i][1]=f[i][0]+\max(f[k][0]+w[k]-c[k])\),
其中\(w[k]\)表示\(k\)到父亲的边权(也就是i到k)
跑\(n\)遍dfs即可.
但这显然可以换根DP啊.
设\(dp[i]\)表示以\(i\)为根的最大分数,
\(v[i]\)表示\(i\)的父亲作为一条蓝边的中点,而\(i\)是一个端点的分数,并且也要再算上\(fa\)到\(i\)这条边.
(可以理解为f[fa][1]伸出去的那条边到了\(i\)这里)
那么有\(dp[i]=f[i][0]+max(dp[fa]-c[i],v[i])\)
就是\(i\)子树里的贡献加上父亲的贡献.
而父亲的贡献要么是不连边(\(dp[fa]-c[i]\)),要么就连边(v[i]).
(把\(f[i][0]\)式子里的\(c[k]\)换成\(c\)的定义就会发现很像)
然后考虑怎么求\(v\).
这里我们是用父亲去求儿子,
也就是当前是\(i\)时,我们考虑求\(i\)的儿子\(k\)(们)的\(v[k]\).
首先\(k\)是一个端点,那么我们要在\(i\)的儿子里再找出一个端点,
这里我们记一个\(mx1\)代表更新\(f[x][1]\)时后面那一串max(f[k][0]+w[k]-c[k])
的最大值,
\(mx2\)表示次大值,\(id\)表示值为\(mx1\)的\(k\).
然后在求\(v[k]\)时,我们就有:
\(v[k]=dp[i]-c[k]+mx1+w[i]\),\(k\not=id\)
这时我们可以直接拿最大值来贡献到\(k\)
\(v[k]=dp[i]-c[k]+mx2+w[i]\),\(k=id\)
因为\(k\)已经是最大值的端点了,所以只能拿次大值来更新.
注意,\(mx1\)和\(mx2\)都要算上父亲!!!
显然父亲也会有贡献.
而父亲的贡献是dp[fa]-c[x]+w[i]-max(dp[fa]-c[x],v[x])
其实和上面的式子的结构是一样的(\(dp[fa]-c[x]\)就是\(f[k][0]\),\(\max(dp[fa]-c[x],v[x])\)就是\(c\))
然后就没有然后了
code:
#include <iostream>
#include <cstdio>
#include <cstring>
#define int long long
using namespace std;
inline int read(){
int sum=0,f=1;char c=getchar();
while(c>'9'||c<'0'){if(c=='-') f=-1;c=getchar();}
while(c<='9'&&c>='0'){sum=(sum<<3)+(sum<<1)+c-'0';c=getchar();}
return sum*f;
}
const int N=200005;
const int INF=1e18;
struct edge{int to,next,w;}e[N<<1];
struct node{int mx1,mx2,id;}a[N];
int n;
int f[N][2],c[N],v[N],dp[N];
int head[N],cnt=0;
inline void add(int x,int y,int w){
e[++cnt]=(edge){head[x],y,w};head[x]=cnt;
}
inline void dfs(int x,int fa){
int ok=0;
for(int i=head[x];i;i=e[i].to){
int k=e[i].next;
if(k==fa) continue;
f[k][1]+=e[i].w;
dfs(k,x);ok=1;
f[x][0]+=c[k];
if(f[k][0]+e[i].w-c[k]>a[x].mx1)
a[x].mx2=a[x].mx1,a[x].mx1=f[k][0]+e[i].w-c[k],a[x].id=k;
else if(f[k][0]+e[i].w-c[k]>a[x].mx2)
a[x].mx2=f[k][0]+e[i].w-c[k];
}
f[x][1]+=f[x][0]+a[x].mx1;
if(!ok) f[x][1]=-INF;
c[x]=max(f[x][0],f[x][1]);
}
inline void dfs1(int x,int fa){
dp[x]=f[x][0]+max(dp[fa]-c[x],v[x]);
for(int i=head[x];i;i=e[i].to){
int k=e[i].next;
if(k==fa) continue;
if(k==a[x].id) v[k]=dp[x]-c[k]+a[x].mx2+e[i].w;
else v[k]=dp[x]-c[k]+a[x].mx1+e[i].w;
int ret=dp[x]-c[k]+e[i].w-max(dp[x]-c[k],v[k]);
if(ret>a[k].mx1) a[k].mx2=a[k].mx1,a[k].mx1=ret,a[k].id=x;
else if(ret>a[k].mx2) a[k].mx2=ret;
dfs1(k,x);
}
}
signed main(){
n=read();
for(int i=1;i<n;i++){
int x=read(),y=read(),w=read();
add(x,y,w);add(y,x,w);
}
for(int i=1;i<=n;i++) a[i].mx1=a[i].mx2=-INF;
dfs(1,0);dfs1(1,0);
int ans=0;
for(int i=1;i<=n;i++) ans=max(ans,dp[i]);
printf("%lld\n",ans);
return 0;
}
题解 [APIO2014]连珠线的更多相关文章
- 【BZOJ3677】[Apio2014]连珠线 换根DP
[BZOJ3677][Apio2014]连珠线 Description 在列奥纳多·达·芬奇时期,有一个流行的童年游戏,叫做“连珠线”.不出所料,玩这个游戏只需要珠子和线,珠子从1到礼编号,线分为红色 ...
- 【LG3647】[APIO2014]连珠线
[LG3647][APIO2014]连珠线 题面 洛谷 题解 首先考虑一下蓝线连起来的情况,一定是儿子-父亲-另一个儿子或者是儿子-父亲-父亲的父亲. 而因为一开始只有一个点在当前局面上,将一条红边变 ...
- [Bzoj3677][Apio2014]连珠线(树形dp)
3677: [Apio2014]连珠线 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 434 Solved: 270[Submit][Status] ...
- bzoj3677: [Apio2014]连珠线
Description 在列奥纳多·达·芬奇时期,有一个流行的童年游戏,叫做“连珠线”.不出所料,玩这个游戏只需要珠子和线,珠子从1到礼编号,线分为红色和蓝色.游戏 开始时,只有1个珠子,而接下来新的 ...
- APIO2014 连珠线
题目链接:戳我 换根DP 由于蒟蒻不会做这个题,所以参考了大佬. 本来想的是有三种情况,一种是该节点不作为两个蓝线的中点(我们称这种不是关键节点),一种是该节点作为关键点.连两个子节点,一种是作为关键 ...
- 并不对劲的bzoj3677:p3647:[APIO2014]连珠线
题目大意 有一种生成\(n\)个点的树的方法为: 一开始有一个点,\(n-1\)次操作,每次可以有两种操作:1.选一个点,用一条红边将它与新点连接:2.将新点放在一条红边上,新点与这条红边两端点直接的 ...
- bzoj 3677: [Apio2014]连珠线【树形dp】
参考:http://www.cnblogs.com/mmlz/p/4456547.html 枚举根,然后做树形dp,设f[i][1]为i是蓝线中点(蓝线一定是父子孙三代),f[i][0]为不是,转移很 ...
- Luogu P3647 [APIO2014]连珠线
题目 换根dp. 显然对于给定的一棵有根树,蓝线都不能拐弯. 设\(f_{u,0}\)表示\(u\)不是蓝线中点时子树内的答案,\(f_{u,1}\)表示\(u\)是蓝线中点时子树内的答案.(以\(1 ...
- 洛谷$P3647\ [APIO2014]$连珠线 换根$dp$
正解:换根$dp$ 解题报告: 传送门! 谁能想到$9102$年了$gql$居然还没写过换根$dp$呢,,,$/kel$ 考虑固定了从哪个点开始之后,以这个点作为根,蓝线只可能是直上直下的,形如&qu ...
随机推荐
- 【51nod】1634 刚体图
[51nod]1634 刚体图 给一个左边n个点右边m个点二分图求合法的连通图个数,每条边选了之后会带来价值乘2的贡献 类似城市规划那道题的计数 设\(g[i][j]\)为左边\(i\)个点,右边\( ...
- 无线网卡SP-WL450U的驱动问题
修改win10的设备驱动为需要的驱动,SP-WL450U的驱动问题 解决SP-WL450U的驱动问题,在电脑上安装无线网卡后,总是用不上5G信号,只能选择2.4G.重新安装程序后也不行,在反复试用后发 ...
- S04_CH01_搭建工程移植LINUX/测试EMMC/VGA
S04_CH01_搭建工程移植LINUX/测试EMMC/VGA 1.1概述: 本章内容是在已经提供安装了VIVADO2015.4 的ubuntu系统下,进行.大家可以下周我们已经提供的虚拟机镜像,我们 ...
- k8s-gitlab搭建
Gitlab官方提供了 Helm 的方式在 Kubernetes 集群中来快速安装,但是在使用的过程中发现 Helm 提供的 Chart 包中有很多其他额外的配置,所以我们这里使用自定义的方式来安装, ...
- vue 集成 vis-network 实现网络拓扑图
vis.js 网站 https://visjs.org/ vs code 下安装命令 npm install vis-network 在vue 下引入 vis-network组件 const v ...
- iis7 运行多个https,433端口监听多个htps 站点
默认情况一个服务器的IIS只能绑定一个HTTPS也就是443端口,现在有需要一个服务器 iis 433 端口 绑定多个 申请到证书后(不是必须要通配符的证书),添加多个https站点,先绑定别的端口 ...
- 为什么领域模型对于架构师如此重要? https://blog.csdn.net/qq_40741855/article/details/84835212
为什么领域模型对于架构师如此重要? https://blog.csdn.net/qq_40741855/article/details/84835212 2018年12月05日 14:30:19 绝圣 ...
- Marketing Cloud的contact merge机制
Marketing Cloud的contact支持多种多样的数据源,如下图所示: SAP Hybris Commerce SAP ERP SAP Cloud for Customer SAP Gigy ...
- swoole聊天室
服务端: <?phpclass Chat{ const HOST = '0.0.0.0';//ip地址 0.0.0.0代表接受所有ip的访问 const PART = 8080;//端口号 pr ...
- springboot和Redis集群版的整合
此篇接上一个文章springboot和Redis单机版的整合 https://www.cnblogs.com/lin530/p/12019023.html 下面接着介绍和Redis集群版的整合. 1. ...