采用霍夫曼编码(Huffman)画出字符串各字符编码的过程并求出各字符编码 --多媒体技术与应用
题目:有一个字符串:cabcedeacacdeddaaaba,问题:
(1)采用霍夫曼编码画出编码的过程,并写出各字符的编码
(2)根据求得的编码,求得各编码需要的总位数
(3)求出整个字符串总编码长度,并计算出字符串位数在编码前与编码后的比值
解答:
(1)各字符出现频率统计如下表所示。
|符号 |出现次数 |出现频率|
|--|--|--|
| a |7|0.35|
|b|2|0.1|
|c|4|0.2|
|d|4|0.2|
|e|3|0.15|
编码过程如下图所示:
各字符编码如下表所示:
|符号|编码(码字) |
|--|--|
| a | 11 |
| b| 100 |
| c| 00 |
| d| 01|
| e|101 |
(2)由(1)可进一步知道字符编码的码长和需要的位数
|符号|符号出现次数 |概率|编码(码字)|码长|需要的位数
|--|--|--|--|--|--
| a |7|0.35|11|2|14
|b|2|0.1|100|3|6
|c|4|0.2|00|2|8
|d|4|0.2|01|2|8
|e|3|0.15|101|3|9
根据求得的编码,求得各编码需要的总位数是:45位(14+6+8+8+9=45)。
(3)字符串总编码长度:60bit(20 x 3 = 60)。
编码前与编码后的比值:4/3(编码前是60,编码后是45)
采用霍夫曼编码(Huffman)画出字符串各字符编码的过程并求出各字符编码 --多媒体技术与应用的更多相关文章
- 霍夫曼编码(Huffman)
题目:有一个字符串:cabcedeacacdeddaaaba,问题: (1)采用霍夫曼编码画出编码的过程,并写出各字符的编码 (2)根据求得的编码,求得各编码需要的总位数 (3)求出整个字符串总编码长 ...
- Java数据结构(十二)—— 霍夫曼树及霍夫曼编码
霍夫曼树 基本介绍和创建 基本介绍 又称哈夫曼树,赫夫曼树 给定n个权值作为n个叶子节点,构造一棵二叉树,若该树的带权路径长度(wpl)达到最小,称为最优二叉树 霍夫曼树是带权路径长度最短的树,权值较 ...
- 霍夫曼编码(Huffman Coding)
霍夫曼编码(Huffman Coding)是一种编码方法,霍夫曼编码是可变字长编码(VLC)的一种. 霍夫曼编码使用变长编码表对源符号(如文件中的一个字母)进行编码,其中变长编码表是通过一种评估来源符 ...
- 赫夫曼\哈夫曼\霍夫曼编码 (Huffman Tree)
哈夫曼树 给定n个权值作为n的叶子结点,构造一棵二叉树,若带权路径长度达到最小,称这样的二叉树为最优二叉树,也称为哈夫曼树(Huffman Tree).哈夫曼树是带权路径长度最短的树,权值较大的结点离 ...
- 基于python的二元霍夫曼编码译码详细设计
一.设计题目 对一幅BMP格式的灰度图像(个人证件照片)进行二元霍夫曼编码和译码 二.算法设计 (1)二元霍夫曼编码: ①:图像灰度处理: 利用python的PIL自带的灰度图像转换函数,首先将彩色图 ...
- 哈夫曼(Huffman)树和哈夫曼编码
一.哈夫曼(Huffman)树和哈夫曼编码 1.哈夫曼树(Huffman)又称最优二叉树,是一类带权路径长度最短的树, 常用于信息检测. 定义: 结点间的路径长度:树中一个结点到另一个结点之间分支数目 ...
- word2vec 中的数学原理二 预备知识 霍夫曼树
主要参考: word2vec 中的数学原理详解 自己动手写 word2vec 编码的话,根是不记录在编码中的 这一篇主要讲的就是霍夫曼树(最优二叉树)和编码. ...
- word2vec中关于霍夫曼树的
再谈word2vec 标签: word2vec自然语言处理NLP深度学习语言模型 2014-05-28 17:17 16937人阅读 评论(7) 收藏 举报 分类: Felven在职场(86) ...
- Alink漫谈(十六) :Word2Vec源码分析 之 建立霍夫曼树
Alink漫谈(十六) :Word2Vec源码分析 之 建立霍夫曼树 目录 Alink漫谈(十六) :Word2Vec源码分析 之 建立霍夫曼树 0x00 摘要 0x01 背景概念 1.1 词向量基础 ...
随机推荐
- php+超大文件上传
1 背景 用户本地有一份txt或者csv文件,无论是从业务数据库导出.还是其他途径获取,当需要使用蚂蚁的大数据分析工具进行数据加工.挖掘和共创应用的时候,首先要将本地文件上传至ODPS,普通的小文件通 ...
- exam8.29
咕了好几篇后... 我终于开始重新写了 T1: 不会,没思路,暴搜还可能会(一开始我以为暴搜时间复杂度为$\Theta (mn ^ k)$) 于是码出了暴搜... 跑一遍$(4,4,5)$,然后... ...
- Educational Codeforces Round 60 D. Magic Gems
易得递推式为f[i]=f[i-1]+f[i-M] 最终答案即为f[N]. 由于N很大,用矩阵快速幂求解. code: #include<bits/stdc++.h> using names ...
- [JLOI2013]卡牌游戏 概率DP
[JLOI2013]卡牌游戏 概率DP 题面 \(dfs\)复杂度爆炸,考虑DP.发现决策时,我们只用关心当前玩家是从庄家数第几个玩家与当前抽到的牌是啥.于是设计状态\(f[i][j]\)表示有\(i ...
- Centos 7 安装 Haproxy
[环境] Centos 7.2 Web1:192.168.136.170 web2:192.168.136.166 Haproxy:192.168.136.173 [web服务器1.2] 安装Ngin ...
- CMD browser in Linux -- Links
Links is an open source web browser written in C programming Language. It is available for all major ...
- 扩展kmp学习笔记
kmp没写过,扩展kmp没学过可还行. 两个愿望,一次满足 (该博客仅用于防止自己忘记,不保证初学者能看懂我在瞎bb什么qwq) 用途 对于串\(s1,s2\),可以求出\(s2\)与\(s1\)的每 ...
- 常用的os库笔记
1.创建文件 import os os.mkdir('d:/log') 2.重命名文件 import os os.rename('d:/log','d:/newlog') 3.删除文件 import ...
- vue.js 中this.$router.push()的使用
在vue项目中,跳转可以用router-link直接跳到某个页面 因为有时候会需要做一些判断等情况,所以要用到 this.$router.push() 因为外链跳转根本就不在router的设计考虑范围 ...
- java关于Integer设置-128到127的静态缓存
今天在一个java群里,看到有个群友问到如下为什么第一个为true,第二个为false. System.out.println(Integer.valueOf("50")==Int ...