Acwing 197. 阶乘分解
给定整数 N ,试把阶乘 N! 分解质因数,按照算术基本定理的形式输出分解结果中的 pipi 和 cici 即可。
输入格式
一个整数N。
输出格式
N! 分解质因数后的结果,共若干行,每行一对pi,cipi,ci,表示含有pciipici项。按照pipi从小到大的顺序输出。
数据范围
1≤N≤1061≤N≤106
输入样例:
5
输出样例:
2 3
3 1
5 1
样例解释
5!=120=23∗3∗5
思路:
- 既然是找质因数的个数,我们就先把到n的所有素数筛出来;
- 每个素数在N!里的个数就是(n/p+n/p^2+n/p^3......)
#include <bits/stdc++.h> using namespace std;
typedef long long ll; const int N= 1e6+;
int v[N],prime[N];
int c[N];
int cun =;
int n;
int primes(int n)
{
for(int i=;i<=n;i++)
{
if(!v[i])
{
v[i]=i;
prime[cun++]=i;
}
for(int j =;j<cun;j++)
{
if(prime[j]>n/i||prime[j]>v[i])break;
v[i*prime[j]]=prime[j];
}
}
}
int main()
{
cin >>n;
primes(n);
for(int i=;i<cun;i++)
{
long long p =;
while(p<=n)
{
p*=prime[i];
c[prime[i]]+=n/p;
}
}
for(int i=;i<cun;i++)
{
if(c[prime[i]]!=)
{
cout <<prime[i]<<' '<<c[prime[i]]<<endl;
}
}
}
Acwing 197. 阶乘分解的更多相关文章
- AcWing 197. 阶乘分解 (筛法)打卡
给定整数 N ,试把阶乘 N! 分解质因数,按照算术基本定理的形式输出分解结果中的 pipi 和 cici 即可. 输入格式 一个整数N. 输出格式 N! 分解质因数后的结果,共若干行,每行一对pi, ...
- 将n(0<=n<=10000)的阶乘分解质因数,求其中有多少个m
给定两个数m,n,其中m是一个素数. 将n(0<=n<=10000)的阶乘分解质因数,求其中有多少个m. 输入 第一行是一个整数s(0<s<=100),表示测试数据的组数 随后 ...
- 数论-质数 poj2689,阶乘分解,求阶乘的尾零hdu1124, 求尾零为x的最小阶乘
/* 要求出[1,R]之间的质数会超时,但是要判断[L,R]之间的数是否是素数却不用筛到R 因为要一个合数n的最大质因子不会超过sqrt(n) 所以只要将[2,sqrt(R)]之间的素数筛出来,再用这 ...
- luogu1445 [violet]樱花 阶乘分解
题目大意 求方程$$\frac{1}{x}+\frac{1}{y}=\frac{1}{N!}$$的正整数解的组数. 思路 咱们把式子整理得$$xy-(x+y)N!=0$$.$xy$和$x+y$?貌似可 ...
- LightOJ 1340 - Story of Tomisu Ghost 阶乘分解素因子
http://www.lightoj.com/volume_showproblem.php?problem=1340 题意:问n!在b进制下至少有t个后缀零,求最大的b. 思路:很容易想到一个数通过分 ...
- LightOJ - 1138 (二分+阶乘分解)
题意:求阶乘尾部有Q(1 ≤ Q ≤ 108)个0的最小N 分析:如果给出N,然后求N!尾部0的个数的话,直接对N除5分解即可(因为尾部0肯定是由5*2构成,那么而在阶乘种,2的因子个数要比5少,所以 ...
- CH 3101 - 阶乘分解 - [埃筛]
题目链接:传送门 题解: $(1e6)!$ 这种数字,表示都表示不出来,想直接 $O(\sqrt{N})$ 分解质因数这种事情就不要想了. 考虑 $N!$ 的特殊性,这个数字的所有可能包含的质因子,就 ...
- poj2992 阶乘分解
/* 将C(n,k)质因数分解,然后约束个数按公式计算 */ #include<iostream> #include<cstring> #include<cstdio&g ...
- CH3101 阶乘分解
题目链接 分解\(n!\)的质因数,输出相应的\(p_i\)和\(c_i\). 其中\(1\leq n\leq 10^6\). 考虑每一个质因子 \(p\) 在 \(n!\) 中出现的次数.显然, ...
随机推荐
- springboot-定时任务-单线程
import org.slf4j.Logger; import org.slf4j.LoggerFactory; import org.springframework.scheduling.annot ...
- pubwin扫描安装
1,注意顺序 先安装一代 FS533 2,在安装精伦 3,在重新注册 PUBWIN 如果还不行一般是注册商没给注册好
- nginx 增加认证
1.检查工具是否安装,如果未安装则使用yum安装 #htpasswd 有以上输出表示已经安装,如果没有按装,使用如下命令安装: #yum -y install httpd-tools 2.htpass ...
- Intellj Idea 快捷键入门
Intellj IDEA快捷键入门 时间: 2019/11/29 系统: Win10系统 版本 :Intellj Idea 2018.3 背景: 入手Intellj idea 两个月了,总结一下一些常 ...
- php socket 编程读写函数
fwrite() 二进制安全 end条件[string写完/length-1]; fputs() fwrite()的别名; fread() 二进制安全,end条件[一个可用包/EOF/length-1 ...
- 如何修改maven本地仓库位置
1.创建文件夹D:\m2\repository 2.修改E:\apache-maven-3.5.4\conf\setting.xml文件.将 改成<localRepository>< ...
- Jmeter之TCP取样器(模拟数据上报压测)
TCP压测 场景:模拟硬件设备上报数据(登录,心跳,GPS定位数据/光感数据/电量数据),对这个功能进行压测 啰嗦一句:TCP压测很简单,只要调通了一个TCP,后续的逻辑判断就用逻辑控制器和正则处理就 ...
- VirtualBox网络之仅主机(Host-Only)网络
https://blog.csdn.net/dkfajsldfsdfsd/article/details/79441874
- 开发过程遇到的css样式问题记录
一.移动端 1.部分安卓机圆角border-radius失效,显示为方形状? background-clip: padding-box; 2.部分安卓机字体图标出现锯齿? 使用iconfont图标 ...
- 02docker核心概念
1:docker三大核心概念 核心概念 描述 镜像 Docker镜像类似于虚拟机镜像,可以将它理解为一个只读的模板. 容器 Docker容器类似于一个轻量级的沙箱,Docker利用容器来运行和隔离应用 ...