前言:

在衡量 Web 页面性能的时候有一个重要的指标叫“FP(First Paint)”,是指从页面加载到首次开始绘制的时长。这个指标直接影响了用户的跳出率,更快的页面响应意味着更多的 PV、更高的参与度,以及更高的转化率。那什么影响 FP 指标呢?其中一个重要的因素是网络加载速度。

一个数据包的“旅程”

下面我将分别从“数据包如何送达主机”“主机如何将数据包转交给应用”和“数据是如何被完整地送达应用程序”这三个角度来为你讲述数据的传输过程。

互联网,实际上是一套理念和协议组成的体系架构。其中,协议是一套众所周知的规则和标准,如果各方都同意使用,那么它们之间的通信将变得毫无障碍。

互联网中的数据是通过数据包来传输的。如果发送的数据很大,那么该数据就会被拆分为很多小数据包来传输。比如你现在听的音频数据,是拆分成一个个小的数据包来传输的,并不是一个大的文件一次传输过来的。

 1. IP:把数据包送达目的主机

数据包要在互联网上进行传输,就要符合网际协议(Internet Protocol,简称 IP)标准。互联网上不同的在线设备都有唯一的地址,地址只是一个数字,这和大部分家庭收件地址类似,你只需要知道一个家庭的具体地址,就可以往这个地址发送包裹,这样物流系统就能把物品送到目的地。

计算机的地址就称为 IP 地址,访问任何网站实际上只是你的计算机向另外一台计算机请求信息。

如果要想把一个数据包从主机 A 发送给主机 B,那么在传输之前,数据包上会被附加上主机 B 的 IP 地址信息,这样在传输过程中才能正确寻址。额外地,数据包上还会附加上主机 A 本身的 IP 地址,有了这些信息主机 B 才可以回复信息给主机 A。这些附加的信息会被装进一个叫 IP 头的数据结构里。IP 头是 IP 数据包开头的信息,包含 IP 版本、源 IP 地址、目标 IP 地址、生存时间等信息。

为了方便理解,先把网络简单分为三层结构,如下图:

下面我们一起来看下一个数据包从主机 A 到主机 B 的旅程:

1.上层将含有“极客时间”的数据包交给网络层;

2.网络层再将 IP 头附加到数据包上,组成新的 IP 数据包,并交给底层;

3.底层通过物理网络将数据包传输给主机 B;

4.数据包被传输到主机 B 的网络层,在这里主机 B 拆开数据包的 IP 头信息,并将拆开来的数据部分交给上层;

5.最终,含有“极客时间”信息的数据包就到达了主机 B 的上层了。

2. UDP:把数据包送达应用程序

IP 是非常底层的协议,只负责把数据包传送到对方电脑,但是对方电脑并不知道把数据包交给哪个程序,是交给浏览器还是交给王者荣耀?因此,需要基于 IP 之上开发能和应用打交道的协议,最常见的是“用户数据包协议(User Datagram Protocol)”,简称 UDP

UDP 中一个最重要的信息是端口号,端口号其实就是一个数字,每个想访问网络的程序都需要绑定一个端口号。通过端口号 UDP 就能把指定的数据包发送给指定的程序了,所以 IP 通过 IP 地址信息把数据包发送给指定的电脑,而 UDP 通过端口号把数据包分发给正确的程序。和 IP 头一样,端口号会被装进 UDP 头里面,UDP 头再和原始数据包合并组成新的 UDP 数据包。UDP 头中除了目的端口,还有源端口号等信息。

为了支持 UDP 协议,我把前面的三层结构扩充为四层结构,在网络层和上层之间增加了传输层,如下图所示:

下面我们一起来看下一个数据包从主机 A 旅行到主机 B 的路线:

1.上层将含有“极客时间”的数据包交给传输层;

2.传输层会在数据包前面附加上 UDP 头,组成新的 UDP 数据包,再将新的 UDP 数据包交给网络层;

3.网络层再将 IP 头附加到数据包上,组成新的 IP 数据包,并交给底层;

4.数据包被传输到主机 B 的网络层,在这里主机 B 拆开 IP 头信息,并将拆开来的数据部分交给传输层;

5.在传输层,数据包中的 UDP 头会被拆开,并根据 UDP 中所提供的端口号,把数据部分交给上层的应用程序;

6.最终,含有“极客时间”信息的数据包就旅行到了主机 B 上层应用程序这里。

在使用 UDP 发送数据时,有各种因素会导致数据包出错,虽然 UDP 可以校验数据是否正确,但是对于错误的数据包,UDP 并不提供重发机制,只是丢弃当前的包,而且 UDP 在发送之后也无法知道是否能达到目的地。虽说 UDP 不能保证数据可靠性,但是传输速度却非常快,所以 UDP 会应用在一些关注速度、但不那么严格要求数据完整性的领域,如在线视频、互动游戏等。

3. TCP:把数据完整地送达应用程序

对于浏览器请求,或者邮件这类要求数据传输可靠性(reliability)的应用,如果使用 UDP 来传输会存在两个问题

1.数据包在传输过程中容易丢失

2.大文件会被拆分成很多小的数据包来传输,这些小的数据包会经过不同的路由,并在不同的时间到达接收端,而 UDP 协议并不知道如何组装这些数据包,从而把这些数据包还原成完整的文件。

基于这两个问题,我们引入 TCP 了。TCP(Transmission Control Protocol,传输控制协议)是一种面向连接的、可靠的、基于字节流的传输层通信协议。相对于 UDP,TCP 有下面两个特点

:

对于数据包丢失的情况,TCP 提供重传机制;

TCP 引入了数据包排序机制,用来保证把乱序的数据包组合成一个完整的文件。和 UDP 头一样,TCP 头除了包含了目标端口和本机端口号外,还提供了用于排序的序列号,以便接收端通过序号来重排数据包。

下面看看 TCP 下的单个数据包的传输流程:

通过上图你应该可以了解一个数据包是如何通过 TCP 来传输的。

TCP 单个数据包的传输流程和 UDP 流程差不多,不同的地方在于,通过 TCP 头的信息保证了一块大的数据传输的完整性。

下面我们再看下完整的 TCP 连接过程,通过这个过程你可以明白 TCP 是如何保证重传机制和数据包的排序功能的。

从下图可以看出,一个完整的 TCP 连接的生命周期包括了“建立连接”“传输数据”和“断开连接”三个阶段。

首先,建立连接阶段。这个阶段是通过“三次握手”来建立客户端和服务器之间的连接。TCP 提供面向连接的通信传输。面向连接是指在数据通信开始之前先做好两端之间的准备工作。所谓三次握手,是指在建立一个 TCP 连接时,客户端和服务器总共要发送三个数据包以确认连接的建立。

其次,传输数据阶段。在该阶段,接收端需要对每个数据包进行确认操作,也就是接收端在接收到数据包之后,需要发送确认数据包给发送端。所以当发送端发送了一个数据包之后,在规定时间内没有接收到接收端反馈的确认消息,则判断为数据包丢失,并触发发送端的重发机制。同样,一个大的文件在传输过程中会被拆分成很多小的数据包,这些数据包到达接收端后,接收端会按照 TCP 头中的序号为其排序,从而保证组成完整的数据。

最后,断开连接阶段。数据传输完毕之后,就要终止连接了,涉及到最后一个阶段“四次挥手”来保证双方都能断开连接。

到这里你应该就明白了,TCP 为了保证数据传输的可靠性,牺牲了数据包的传输速度,因为“三次握手”和“数据包校验机制”等把传输过程中的数据包的数量提高了一倍。

注: 本文出自极客时间(浏览器工作原理与实践),请大家多多支持李兵老师。如有侵权,请及时告知

《浏览器工作原理与实践》<02>TCP协议:如何保证页面文件能被完整送达浏览器?的更多相关文章

  1. 《浏览器工作原理与实践》<04>从输入URL到页面展示,这中间发生了什么?

    “在浏览器里,从输入 URL 到页面展示,这中间发生了什么? ”这是一道经典的面试题,能比较全面地考察应聘者知识的掌握程度,其中涉及到了网络.操作系统.Web 等一系列的知识. 在面试应聘者时也必问这 ...

  2. 《浏览器工作原理与实践》<03>HTTP请求流程:为什么很多站点第二次打开速度会很快?

    一个 TCP 连接过程包括了建立连接.传输数据和断开连接三个阶段. 而 HTTP 协议,正是建立在 TCP 连接基础之上的.HTTP 是一种允许浏览器向服务器获取资源的协议,是 Web 的基础,通常由 ...

  3. 《浏览器工作原理与实践》 <12>栈空间和堆空间:数据是如何存储的?

    对于前端开发者来说,JavaScript 的内存机制是一个不被经常提及的概念 ,因此很容易被忽视.特别是一些非计算机专业的同学,对内存机制可能没有非常清晰的认识,甚至有些同学根本就不知道 JavaSc ...

  4. 《浏览器工作原理与实践》<11>this:从JavaScript执行上下文的视角讲清楚this

    在上篇文章中,我们讲了词法作用域.作用域链以及闭包,接下来我们分析一下这段代码: var bar = { myName:"time.geekbang.com", printName ...

  5. 《浏览器工作原理与实践》<10>作用域链和闭包 :代码中出现相同的变量,JavaScript引擎是如何选择的?

    在上一篇文章中我们讲到了什么是作用域,以及 ES6 是如何通过变量环境和词法环境来同时支持变量提升和块级作用域,在最后我们也提到了如何通过词法环境和变量环境来查找变量,这其中就涉及到作用域链的概念. ...

  6. 《浏览器工作原理与实践》<09>块级作用域:var缺陷以及为什么要引入let和const?

    在前面我们已经讲解了 JavaScript 中变量提升的相关内容,正是由于 JavaScript 存在变量提升这种特性,从而导致了很多与直觉不符的代码,这也是 JavaScript 的一个重要设计缺陷 ...

  7. 《浏览器工作原理与实践》<08>调用栈:为什么JavaScript代码会出现栈溢出?

    在上篇文章中,我们讲到了,当一段代码被执行时,JavaScript 引擎先会对其进行编译,并创建执行上下文.但是并没有明确说明到底什么样的代码才算符合规范. 那么接下来我们就来明确下,哪些情况下代码才 ...

  8. 《浏览器工作原理与实践》<07>变量提升:JavaScript代码是按顺序执行的吗?

    讲解完宏观视角下的浏览器后,从这篇文章开始,我们就进入下一个新的模块了,这里我会对 JavaScript 执行原理做深入介绍. 今天在该模块的第一篇文章,我们主要讲解执行上下文相关的内容.那为什么先讲 ...

  9. 《浏览器工作原理与实践》<06>渲染流程(下):HTML、CSS和JavaScript,是如何变成页面的?

    在上篇文章中,我们介绍了渲染流水线中的 DOM 生成.样式计算和布局三个阶段,那今天我们接着讲解渲染流水线后面的阶段. 这里还是先简单回顾下上节前三个阶段的主要内容:在 HTML 页面内容被提交给渲染 ...

随机推荐

  1. python多线程使用场景

    python多线程使用场景 如果程序时cpu密集型的,使用python的多线程是无法提升效率的,如果程序时IO密集型的,使用python多线程可以提高程序的整体效率 CPU密集型(CPU-bound) ...

  2. vim复制粘贴导致多行出现#号解决办法

    在vim内复制多行假如复制的行带有#号会导致其他不带#号的行自动加# 解决办法,输入一下命令再粘贴即可 :set paste

  3. 解决zabbix中文乱码问题

    进入Windows系统控制面板-->外观和个性化-->字体(选择一个字体文件simsun.ttc复制)进入zabbix的web服务器[root@test-zabbix]# cd ~/zab ...

  4. Go语言中defer语句使用小结

    defer是Go语言中的延迟执行语句,用来添加函数结束时执行的代码,常用于释放某些已分配的资源.关闭数据库连接.断开socket连接.解锁一个加锁的资源.Go语言机制担保一定会执行defer语句中的代 ...

  5. hi cnblogs

    hi cnblogs 前言: 作为一个工作好些年的it男,还没正经写过技术博客,真是太羞愧了... 正文: 先扯点儿虚的,无论从事什么行业,最重要的都是自我认知和自我定位.至今,我也有工作了小五年了, ...

  6. iostream

    cout 星号*为默认 控制符 描 述 控制符 描 述 *dec 以十进制形式输出整数 hex 以十六进制形式输出整数 oct 以八进制形式输出整数 fixed 以普通小数形式输出浮点数 scient ...

  7. JavaScript 短路值

    了解表达式中的短路值. 逻辑运算从左到右.逻辑或运算,当左边的条件成立时,后面的条件将不再参与运算.因此在逻辑或运算中,尽量将条件结果为true的放第一位.而在逻辑与运算中,尽量将条件结果为false ...

  8. C语言I博客作业12—学期总结

    一.我学到的内容 二.我的收获(包括我完成的所有作业的链接+收获)不能只有作业链接,没有收获 作业次数 作业链接 第一次 C语言I博客作业01 第二次 C语言I博客作业02 第三次 C语言I博客作业0 ...

  9. POJ2513 【并查集+欧拉路径+trie树】

    题目链接:http://poj.org/problem?id=2513 Colored Sticks Time Limit: 5000MS   Memory Limit: 128000K Total ...

  10. UWP笔记-边框背景虚化效果

    这是一个简单的UI外观 1.添加Negut包: Microsoft.Toolkit.Uwp.UI.Controls 2.xaml:命名空间中引用 xmlns:controls="using: ...