「BZOJ 2653」middle「主席树」「二分」
题意
一个长度为\(n\)的序列\(a\),设其排过序之后为\(b\),其中位数定义为\(b[n/2]\),其中\(a,b\)从\(0\)开始标号,除法取下整。给你一个长度为\(n\)的序列\(s\)。回答\(Q\)个这样的询问:\(s\)的左端点在\([a,b]\)之间,右端点在\([c,d]\)之间的子序列中,最大的中位数。其中\(a<b<c<d\)。位置也从\(0\)开始标号。强制在线。
题解
比较套路地,我们考虑二分这个中位数(设为当前\(mid\)),如果它偏左就往右移,否则往左移
为了方便,若\(x<mid\),它的贡献是\(-1\),否则是\(1\),这样我们只要看总贡献的正负就行
我们就求出\([b + 1, c - 1]\)的贡献,加上\([a, b]\)的最大后缀和\([c, d]\)的最大前缀
我们考虑怎么求一个区间\([l, r]\)对\(c\)的贡献的前缀max,后缀max,区间和。如果对下标开主席树,区间和可以,但前两个操作不太行。
考虑两维互换。先考虑\([1, n]\)对\(1\)(注意这里已经离散化过了)的贡献,然后再移动到\([1, n]\)对\(2\)的贡献。我们发现总共只有\(n\)次\(1\)被改成\(-1\)的操作,就可以主席树了
询问的时候只要在一棵主席树上查询就行了,因为我们维护的并不是前缀信息。
#include <algorithm>
#include <cstdio>
#include <vector>
using namespace std;
const int N = 3e4 + 10;
const int M = N * 40;
int n, q, a[N], num[N], b[N], T[N], ls[M], rs[M], id;
vector<int> pos[N];
struct Node {
int s, lm, rm;
void init(int x) { s = lm = rm = x; }
} t[M];
void merge(Node &ans, const Node &l, const Node &r) {
ans.s = l.s + r.s; ans.lm = max(l.lm, l.s + r.lm); ans.rm = max(r.rm, r.s + l.rm);
}
void build(int &u, int l, int r) {
u = ++ id;
if(l == r) { t[u].init(1); return ; }
int mid = (l + r) >> 1;
build(ls[u], l, mid);
build(rs[u], mid + 1, r);
merge(t[u], t[ls[u]], t[rs[u]]);
}
void ins(int &u, int p, int l, int r, int x) {
u = ++ id; t[u] = t[p]; ls[u] = ls[p]; rs[u] = rs[p];
if(l == r) { t[u].init(-1); return ; }
int mid = (l + r) >> 1;
if(x <= mid) ins(ls[u], ls[p], l, mid, x);
else ins(rs[u], rs[p], mid + 1, r, x);
merge(t[u], t[ls[u]], t[rs[u]]);
}
Node qry(int u, int l, int r, int ql, int qr) {
if(l == ql && r == qr) return t[u];
int mid = (l + r) >> 1;
if(qr <= mid) return qry(ls[u], l, mid, ql, qr);
if(ql > mid) return qry(rs[u], mid + 1, r, ql, qr);
Node ans;
merge(ans, qry(ls[u], l, mid, ql, mid), qry(rs[u], mid + 1, r, mid + 1, qr));
return ans;
}
int qry_sum(int u, int l, int r, int ql, int qr) {
if(l == ql && r == qr) return t[u].s;
int mid = (l + r) >> 1;
if(qr <= mid) return qry_sum(ls[u], l, mid, ql, qr);
if(ql > mid) return qry_sum(rs[u], mid + 1, r, ql, qr);
return qry_sum(ls[u], l, mid, ql, mid) + qry_sum(rs[u], mid + 1, r, mid + 1, qr);
}
int calc(int a, int b, int c, int d, int mid) {
int ans = qry(T[mid], 1, n, a, b).rm + qry(T[mid], 1, n, c, d).lm;
if(b + 1 < c) ans += qry_sum(T[mid], 1, n, b + 1, c - 1);
return ans;
}
int solve(int a, int b, int c, int d) {
int l = 1, r = n, mid;
while(l <= r) {
mid = (l + r) >> 1;
if(calc(a, b, c, d, mid) >= 0) l = mid + 1;
else r = mid - 1;
}
return num[l - 1];
}
int main() {
scanf("%d", &n);
for(int i = 1; i <= n; i ++) scanf("%d", a + i), num[i] = a[i];
sort(num + 1, num + n + 1);
for(int i = 1; i <= n; i ++) b[i] = lower_bound(num + 1, num + n + 1, a[i]) - num, pos[b[i]].push_back(i);
build(T[1], 1, n);
for(int i = 2; i <= n; i ++) {
T[i] = T[i - 1];
for(int j = 0; j < pos[i - 1].size(); j ++)
ins(T[i], T[i], 1, n, pos[i - 1][j]);
}
scanf("%d", &q);
int arr[4], la_ans = 0;
for(int i = 1; i <= q; i ++) {
scanf("%d%d%d%d", arr, arr + 1, arr + 2, arr + 3);
for(int j = 0; j < 4; j ++) arr[j] = (arr[j] + la_ans) % n;
sort(arr, arr + 4);
printf("%d\n", la_ans = solve(arr[0] + 1, arr[1] + 1, arr[2] + 1, arr[3] + 1));
}
return 0;
}
「BZOJ 2653」middle「主席树」「二分」的更多相关文章
- BZOJ2653 middle 【主席树】【二分】*
BZOJ2653 middle Description 一个长度为n的序列a,设其排过序之后为b,其中位数定义为b[n/2],其中a,b从0开始标号,除法取下整.给你一个长度为n的序列s.回答Q个这样 ...
- 【BZOJ2653】Middle(主席树)
[BZOJ2653]Middle(主席树) 题面 BZOJ 洛谷 Description 一个长度为n的序列a,设其排过序之后为b,其中位数定义为b[n/2],其中a,b从0开始标号,除法取下整.给你 ...
- [BZOJ 2989]数列(二进制分组+主席树)
[BZOJ 2989]数列(二进制分组+主席树) 题面 给定一个长度为n的正整数数列a[i]. 定义2个位置的graze值为两者位置差与数值差的和,即graze(x,y)=|x-y|+|a[x]-a[ ...
- BZOJ.5319.[JSOI2018]军训列队(主席树)
LOJ BZOJ 洛谷 看错了,果然不是\(ZJOI\)..\(jry\)给\(JSOI\)出这么水的题做T3么= = 感觉说的有点乱,不要看我写的惹=-= 对于询问\(l,r,k\),设\(t=r- ...
- BZOJ 2223 [Coci 2009]PATULJCI | 主席树练习 (好像是个权限题啊)
题目: 给个序列,问[l,r]区间内是否存在x>(r-l+1)>>1 题解: 好像大家都觉得这个题比较简单,没人写题解啊 先说BZOJ样例的格式应该是,第二个数是序列中数的范围(就是 ...
- bzoj 4448 [Scoi2015]情报传递(主席树,LCA)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=4448 [题意] 给定一颗树,询问一条路径上权值小于t-c的点数. [思路] 将一个2查 ...
- bzoj 3123 [Sdoi2013]森林(主席树,lca,启发式合并)
Description Input 第一行包含一个正整数testcase,表示当前测试数据的测试点编号.保证1≤testcase≤20. 第二行包含三个整数N,M,T,分别表示节点数.初始边数.操作数 ...
- Bzoj 1901: Zju2112 Dynamic Rankings 主席树,可持久,树状数组,离散化
1901: Zju2112 Dynamic Rankings Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 6321 Solved: 2628[Su ...
- BZOJ 3932: [CQOI2015]任务查询系统 [主席树]
传送门 题意: 任务用三元组(Si,Ei,Pi)描述,(Si,Ei,Pi)表示任务从第Si秒开始,在第Ei秒后结束(第Si秒和Ei秒任务也在运行),其优先级为Pi 调度系统会经常向查询系统询问,第Xi ...
随机推荐
- 利用Python进行数据分析_Numpy_基础_1
ndarray:多维数组 ndarray 每个数组元素必须是相同类型,每个数组都有shape和dtype对象. shape 表示数组大小 dtype 表示数组数据类型 array 如何创建一个数组? ...
- 一、python快速入门(每个知识点后包含练习)
1. 编程与编程语言 编程的目的是什么? #计算机的发明,是为了用机器取代/解放人力,而编程的目的则是将人类的思想流程按照某种能够被计算机识别的表达方式传递给计算机,从而达到让计算机能够像人脑/电脑一 ...
- WIndows系统BAT文件语法和技巧 原文的地址(http://www.jb51.net/article/5828.htm)
批处理文件是一个文本文件,这个文件的每一行都是一条DOS命令(大部分时候就好象我们在DOS提示符下执行的命令行一样),你可以使用DOS下的Edit或者Windows的记事本(notepad)等任何文本 ...
- CSS 实现居中 + 清除浮动
一.水平居中 1.行内元素:text-align:center; 2.块级元素:margin:0 auto; 3.绝对定位和移动:absolute + transform 4.绝对定位和负边距:abs ...
- Django + mysql 在创建数据库出错
错误:django.db.utils.OperationalError: (1366, "Incorrect string value: '\\xE6\\x96\\x87\\xE7\\xAB ...
- VC文件扩展名
.APS:存放二进制资源的中间文件,VC把当前资源文件转换成二进制格式,并存放在APS文件中,以加快资源装载速度. .BMP:位图资源文件. .BSC:浏览信息文件,由浏览信息维护工具(BSCMAKE ...
- mysql启动失败“MySQL Daemon failed to start”
CentOS上,用命令:service mysqld restart 启动mysql报错: # service mysqld restart Stopping mysqld: [ OK ] MySQL ...
- Java攻城狮面试题录:笔试篇(1)
1.作用域public,private,protected,以及不写时的区别答:区别如下:不写时默认为friendly 2.ArrayList和Vector的区别,HashMap和Hashtable的 ...
- 使用Google Thumbnails 压缩图片
背景说明:最近项目中需要用到一些图片文件的上传 ,但是有些图片很大,比如轮播图,大有的有几兆,这样加载一个首页都要很久,显然这样对用户体验是非常不友好的,对服务器资源将是一种浪费. 为了解决这个问题, ...
- python+selenium之——错误:selenium.common.exceptions.WebDriverException: Message: ‘geckodriver’ executable needs to be in PATH.
此时,需要自己配置geckodriver 下载geckodriver,地址:https://github.com/mozilla/geckodriver/releases 下载后解压得到geckodr ...