洛谷题目链接

动态规划:

我们设状态$f[i][j][o][p][k]$表示一个矩形,左上角顶点坐标为$(i,j)$,右下角顶点坐标为$(o,p)$时分割了$k$次,也就是说现在是$k+1$块

我们考虑状态转移:

枚举$ii$为切割某列,那么状态转移如下:

$minn=min(minn,min(f[i][j][o][ii][k-1]+f[i][ii+1][o][p][0],f[i][j][o][ii][0]+f[i][ii+1][o][p][k-1]))$

枚举$ii$为切割某行,那么状态转移如下:
$minn=min(minn,min(f[i][j][ii][p][k-1]+f[ii+1][j][o][p][0],f[i][j][ii][p][0]+f[ii+1][j][o][p][k-1]))$

初始化的时候弄个二维前缀和就好了

代码:

#include<iostream>
#include<cstdio>
#define N 9
#define M 17
using namespace std;
int n;
int g[N][N],sum[N][N],f[N][N][N][N][M];
int main()
{
scanf("%d",&n);
for(int i=1;i<=8;++i)
for(int j=1;j<=8;++j)
scanf("%d",&g[i][j]),sum[i][j]=sum[i-1][j]+sum[i][j-1]+g[i][j]-sum[i-1][j-1];
// for(int i=1;i<=8;++i)
// {
// for(int j=1;j<=8;++j)
// printf("%d ",sum[i][j]);
// printf("\n");
// }
for(int i=1;i<=8;++i)
for(int j=1;j<=8;++j)
for(int o=i;o<=8;++o)
for(int p=j;p<=8;++p)
f[i][j][o][p][0]=sum[o][p]-sum[o][j-1]-sum[i-1][p]+sum[i-1][j-1],f[i][j][o][p][0]*=f[i][j][o][p][0];
for(int k=1;k<n;++k)
for(int i=1;i<=8;++i)
for(int j=1;j<=8;++j)
for(int o=i;o<=8;++o)
for(int p=j;p<=8;++p)
{
int minn=0x3f3f3f3f;
for(int ii=j;ii<p;++ii)
minn=min(minn,min(f[i][j][o][ii][k-1]+f[i][ii+1][o][p][0],f[i][j][o][ii][0]+f[i][ii+1][o][p][k-1]));
for(int ii=i;ii<o;++ii)
minn=min(minn,min(f[i][j][ii][p][k-1]+f[ii+1][j][o][p][0],f[i][j][ii][p][0]+f[ii+1][j][o][p][k-1]));
f[i][j][o][p][k]=minn;
}
printf("%d",f[1][1][8][8][n-1]);
return 0;
}

  

洛谷P1436 棋盘分割的更多相关文章

  1. 洛谷 P1436 棋盘分割 解题报告

    P1436 棋盘分割 题目描述 将一个8*8的棋盘进行如下分割:将原棋盘割下一块矩形棋盘并使剩下部分也是矩形,再将剩下的两部分中的任意一块继续如此分割,这样割了(n-1)次后,连同最后剩下的矩形棋盘共 ...

  2. 2017普及组D1T3 洛谷P3956 棋盘

    2017普及组D1T3 洛谷P3956 棋盘 原题 题目描述 有一个m×m的棋盘,棋盘上每一个格子可能是红色.黄色或没有任何颜色的.你现在要从棋盘的最左上角走到棋盘的最右下角. 任何一个时刻,你所站在 ...

  3. 洛谷 P3956 棋盘 解题报告

    P3956 棋盘 题目描述 有一个\(m×m\)的棋盘,棋盘上每一个格子可能是红色.黄色或没有任何颜色的.你现在要从棋盘的最左上角走到棋盘的最右下角. 任何一个时刻,你所站在的位置必须是有颜色的(不能 ...

  4. [POJ] 1191 [LUOGU] P1436 棋盘分割

    那个均方差,可以通过展开.合并Σ,发现最终只有Xi^2会对答案造成影响,其他都是定值,所以求出最小的和的平方就行. 其实这才是这题最难的部分,以下都是码农部分. f[x1][y1][x2][y2][k ...

  5. P1436 棋盘分割[dp]

    题目描述 将一个8*8的棋盘进行如下分割:将原棋盘割下一块矩形棋盘并使剩下部分也是矩形,再将剩下的两部分中的任意一块继续如此分割,这样割了(n-1)次后,连同最后剩下的矩形棋盘共有n块矩形棋盘.(每次 ...

  6. 洛谷P3145 [USACO16OPEN]分割田地Splitting the Field

    P3145 [USACO16OPEN]分割田地Splitting the Field 题目描述 Farmer John's NN cows (3 \leq N \leq 50,0003≤N≤50,00 ...

  7. 洛谷P1549 棋盘问题(2)

    P1549 棋盘问题(2) 题目描述 在N*N的棋盘上(1≤N≤10),填入1,2,…,N*N共N*N个数,使得任意两个相邻的数之和为素数. 例如:当N=2时,有: 其相邻数的和为素数的有: 1+2, ...

  8. 洛谷P2217 [HAOI2007]分割矩阵

    P2217 [HAOI2007]分割矩阵 题目描述 将一个a*b的数字矩阵进行如下分割:将原矩阵沿某一条直线分割成两个矩阵,再将生成的两个矩阵继续如此分割(当然也可以只分割其中的一个),这样分割了(n ...

  9. 洛谷 P1548 棋盘问题

    题目描述 设有一个N*M方格的棋盘(l<=N<=100,1<=M<=100)(30%) 求出该棋盘中包含有多少个正方形.多少个长方形(不包括正方形). 例如:当 N=2, M= ...

随机推荐

  1. [DEBUG] Spring boot前端html无法下载示例文件

    更新:原方法打jar包的时候是可以的,后来我打war包之后下载的文件就是0字节.尴尬:) 所以现在更换一种方法,然后打war包.在服务器已测试成功. 前端不需要改变,只需要更改controller: ...

  2. 【Python基础】14_Python中的TODO注释

    # TODO XXX... IDE中右键左下角,可显示当前项目所有的TODO

  3. Istio技术与实践01: 源码解析之Pilot多云平台服务发现机制

    服务模型 首先,Istio作为一个(微)服务治理的平台,和其他的微服务模型一样也提供了Service,ServiceInstance这样抽象服务模型.如Service的定义中所表达的,一个服务有一个全 ...

  4. STM32之DMA实例

    版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.csdn.net/zouleideboke/article/details/75092558 DMA简介: DMA(Di ...

  5. Educational Codeforces Round 71 (Rated for Div. 2) Solution

    A. There Are Two Types Of Burgers 题意: 给一些面包,鸡肉,牛肉,你可以做成鸡肉汉堡或者牛肉汉堡并卖掉 一个鸡肉汉堡需要两个面包和一个鸡肉,牛肉汉堡需要两个面包和一个 ...

  6. Spring 自定义Bean 实例获取

    一.通过指定配置文件获取, 对于Web程序而言,我们启动spring容器是通过在web.xml文件中配置,这样相当于加载了两次spring容器 ApplicationContext ac = new ...

  7. Task资料

    5天玩转C#并行和多线程编程:http://www.cnblogs.com/yunfeifei/p/3993401.html

  8. MySql学习- 存储引擎简介

    mysql可以将数据以不同的技术存储在文件(内存)中,这种技术就称为存储引擎. 每一种存储引擎使用不同的存储机制.索引技巧.锁定水平,最终提供广泛且不同的功能. MySQL支持的存储引擎: MyISA ...

  9. git提交项目到码云

    提交代码: git initgit remote add origin 远程仓库地址git pull --rebase origin mastergit add -Agit commit -m &qu ...

  10. sipp如何避免dead call

    uac 和 uas 都加上  -deadcall_wait 0