flink部署
参考:
https://ververica.cn/developers-resources/
#flink参数
https://blog.csdn.net/qq_35440040/article/details/84992796
spark使用批处理模拟流计算
flink使用流框架模拟批计算
https://ci.apache.org/projects/flink/flink-docs-release-1.8/
https://flink.apache.org/downloads.html#

下载包:
https://flink.apache.org/downloads.html
tar -xzvf flink-1.8.0-bin-scala_2.11.tgz -C /opt/module/
vim /etc/profile
export FLINK_HOME=/opt/module/flink-1.8.0
export PATH=$PATH:$FLINK_HOME/bin
cd /opt/module/flink-1.8.0/conf
mv flink-conf.yaml flink-conf.yaml.bak
vim flink-conf.yaml
jobmanager.rpc.address: Fengfeng-dr-algo1
jobmanager.rpc.port: 6123
jobmanager.heap.size: 1024m
taskmanager.heap.size: 1024m
taskmanager.numberOfTaskSlots: 2
parallelism.default: 2
fs.default-scheme: hdfs://Fengfeng-dr-algo1:9820
#这个是在core-site.xml里配的hdfs集群地址,yarn集群模式主要配这个
vim masters
Fengfeng-dr-algo1
vim slaves
Fengfeng-dr-algo2
Fengfeng-dr-algo3
Fengfeng-dr-algo4
#配置完成后将文件同步到其他节点
scp /etc/profile Fengfeng-dr-algo2:/etc/profile
scp /etc/profile Fengfeng-dr-algo3:/etc/profile
scp /etc/profile Fengfeng-dr-algo4:/etc/profile
scp -r /opt/module/flink-1.8.0/ Fengfeng-dr-algo2:/opt/module
scp -r /opt/module/flink-1.8.0/ Fengfeng-dr-algo3:/opt/module
scp -r /opt/module/flink-1.8.0/ Fengfeng-dr-algo4:/opt/module
启动集群start-cluster.sh
检查TaskManagerRunner服务起来没有:
[root@Fengfeng-dr-algo1 conf]# ansible all -m shell -a 'jps'
Fengfeng-dr-algo3 | SUCCESS | rc=0 >>
20978 DataNode
22386 TaskManagerRunner
22490 Jps
21295 NodeManager
Fengfeng-dr-algo4 | SUCCESS | rc=0 >>
24625 NodeManager
26193 TaskManagerRunner
24180 DataNode
24292 SecondaryNameNode
26297 Jps
Fengfeng-dr-algo2 | SUCCESS | rc=0 >>
26753 Jps
24867 ResourceManager
24356 DataNode
25480 NodeManager
26650 TaskManagerRunner
Fengfeng-dr-algo1 | SUCCESS | rc=0 >>
27216 Jps
24641 NameNode
24789 DataNode
27048 StandaloneSessionClusterEntrypoint
25500 NodeManager
查看WebUI,端口为8081

#运行flink测试,1.txt在hdfs上.
1/ 以standalone模式
flink run /opt/module/flink-1.8.0/examples/batch/WordCount.jar -c wordcount --input /1.txt
2/ 以yarn-cluster模式,需要停掉集群模式stop-cluster.sh
flink run -m yarn-cluster /opt/module/flink-1.8.0/examples/batch/WordCount.jar -c wordcount --input /1.txt
yarn-cluster跑得作业情况可在yarn的web8080端口看
附: flink yarn-cluster跑wordcount结果
[root@fengfeng-dr-algo1 hadoop]# flink run -m yarn-cluster /opt/module/flink-1.8.0/examples/batch/WordCount.jar -c wordcount --input /1.txt
2019-08-15 03:52:50,622 INFO org.apache.hadoop.yarn.client.RMProxy - Connecting to ResourceManager at oride-dr-algo2/172.28.20.168:8032
2019-08-15 03:52:50,755 INFO org.apache.flink.yarn.cli.FlinkYarnSessionCli - No path for the flink jar passed. Using the location of class org.apache.flink.yarn.YarnClusterDescriptor to locate the jar
2019-08-15 03:52:50,755 INFO org.apache.flink.yarn.cli.FlinkYarnSessionCli - No path for the flink jar passed. Using the location of class org.apache.flink.yarn.YarnClusterDescriptor to locate the jar
2019-08-15 03:52:50,922 WARN org.apache.flink.yarn.AbstractYarnClusterDescriptor - Neither the HADOOP_CONF_DIR nor the YARN_CONF_DIR environment variable is set. The Flink YARN Client needs one of these to be set to properly load the Hadoop configuration for accessing YARN.
2019-08-15 03:52:50,961 INFO org.apache.flink.yarn.AbstractYarnClusterDescriptor - Cluster specification: ClusterSpecification{masterMemoryMB=1024, taskManagerMemoryMB=1024, numberTaskManagers=1, slotsPerTaskManager=2}
2019-08-15 03:52:51,410 WARN org.apache.flink.yarn.AbstractYarnClusterDescriptor - The configuration directory ('/opt/module/flink-1.8.0/conf') contains both LOG4J and Logback configuration files. Please delete or rename one of them.
2019-08-15 03:52:52,456 INFO org.apache.flink.yarn.AbstractYarnClusterDescriptor - Submitting application master application_1565840709386_0002
2019-08-15 03:52:52,481 INFO org.apache.hadoop.yarn.client.api.impl.YarnClientImpl - Submitted application application_1565840709386_0002
2019-08-15 03:52:52,481 INFO org.apache.flink.yarn.AbstractYarnClusterDescriptor - Waiting for the cluster to be allocated
2019-08-15 03:52:52,484 INFO org.apache.flink.yarn.AbstractYarnClusterDescriptor - Deploying cluster, current state ACCEPTED
2019-08-15 03:52:56,776 INFO org.apache.flink.yarn.AbstractYarnClusterDescriptor - YARN application has been deployed successfully.
Starting execution of program
Printing result to stdout. Use --output to specify output path.
(abstractions,1)
(an,3)
(and,3)
(application,1)
(at,2)
(be,1)
(broadcast,2)
(called,1)
(can,1)
(deep,1)
(dive,1)
(dynamic,1)
(event,1)
(every,1)
(example,1)
(explain,1)
(exposed,1)
(flink,6)
(has,1)
(implementation,1)
(into,1)
(is,4)
(look,1)
(make,1)
(of,6)
(on,1)
(one,2)
(physical,1)
(runtime,1)
(s,3)
(stack,3)
(state,3)
(the,6)
(this,2)
(types,1)
(up,1)
(what,1)
(a,2)
(about,1)
(apache,3)
(applied,1)
(components,1)
(core,2)
(detail,1)
(evaluates,1)
(first,1)
(how,1)
(in,4)
(it,1)
(job,1)
(module,1)
(multiple,1)
(network,3)
(operator,1)
(operators,1)
(optimisations,1)
(patterns,1)
(post,2)
(posts,1)
(series,1)
(show,1)
(sitting,1)
(stream,2)
(that,2)
(their,1)
(to,2)
(various,1)
(we,2)
(which,2)
Program execution finished
Job with JobID 11307954aeb6a6356cd7b4068f0f2160 has finished.
Job Runtime: 8448 ms
Accumulator Results:
- f0f87f15adda6b1c2703a30e110db5ed (java.util.ArrayList) [69 elements]
公司:
flink run -p 2 -m yarn-cluster -yn 2 -yqu root.users.airflow -ynm opay-metrics -ys 1 -d -c com.opay.bd.opay.main.OpayOrderMetricsMain bd-flink-project-1.0.jar
flink run -p 2 -m yarn-cluster -yn 2 -yqu root.users.airflow -ynm oride-metrics -ys 1 -d -c com.opay.bd.oride.main.OrideOrderMetricsMain bd-flink-project-1.0.jar
-p,--parallelism <parallelism> 运行程序的并行度。 可以选择覆盖配置中指定的默认值
-yn 分配 YARN 容器的数量(=TaskManager 的数量)
-yqu,--yarnqueue <arg> 指定 YARN 队列
-ynm oride-metrics 给应用程序一个自定义的名字显示在 YARN 上
-ys,--yarnslots <arg> 每个 TaskManager 的槽位数量
-ys,--yarnslots <arg> 每个 TaskManager 的槽位数量
-c,--class <classname> 程序入口类
("main" 方法 或 "getPlan()" 方法)
-m yarn-cluster cluster模式
flink部署的更多相关文章
- Flink部署-standalone模式
Flink部署-standalone模式 2018年11月30日 00:07:41 Xlucas 阅读数:74 版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.cs ...
- Flink 部署文档
Flink 部署文档 1 先决条件 2 下载 Flink 二进制文件 3 配置 Flink 3.1 flink-conf.yaml 3.2 slaves 4 将配置好的 Flink 分发到其他节点 5 ...
- flink部署操作-flink standalone集群安装部署
flink集群安装部署 standalone集群模式 必须依赖 必须的软件 JAVA_HOME配置 flink安装 配置flink 启动flink 添加Jobmanager/taskmanager 实 ...
- Flink(二) —— 部署与任务提交
一.下载&启动 官网上下载安装包,执行下列命令即启动完成. ./bin/start-cluster.sh 效果图 Flink部署模式 Standalone模式 Yarn模式 k8s部署 二.配 ...
- 新一代大数据处理引擎 Apache Flink
https://www.ibm.com/developerworks/cn/opensource/os-cn-apache-flink/index.html 大数据计算引擎的发展 这几年大数据的飞速发 ...
- Flink的高可用集群环境
Flink的高可用集群环境 Flink简介 Flink核心是一个流式的数据流执行引擎,其针对数据流的分布式计算提供了数据分布,数据通信以及容错机制等功能. 因现在主要Flink这一块做先关方面的学习, ...
- 大数据框架对比:Hadoop、Storm、Samza、Spark和Flink
转自:https://www.cnblogs.com/reed/p/7730329.html 今天看到一篇讲得比较清晰的框架对比,这几个框架的选择对于初学分布式运算的人来说确实有点迷茫,相信看完这篇文 ...
- Apache Flink系列(1)-概述
一.设计思想及介绍 基本思想:“一切数据都是流,批是流的特例” 1.Micro Batching 模式 在Micro-Batching模式的架构实现上就有一个自然流数据流入系统进行攒批的过程,这在一定 ...
- Flink运行在yarn上
在一个企业中,为了最大化的利用集群资源,一般都会在一个集群中同时运行多种类型的 Workload.因此 Flink 也支持在 Yarn 上面运行: flink on yarn的前提是:hdfs.yar ...
随机推荐
- node的http与前端交互示例(入门)
一.目录(node_modules是npm install后新增的) node 和 npm 版本 npm install http 二.node下的index.js var http = requir ...
- Https Get Post
#region Http 访问 public string GetHttpUrl(string Url) { try { HttpWebRequest request = (HttpWebReques ...
- POI2012 BEZ-Minimalist Security | noi.ac #537 Graph
题目链接:戳我 首先注意这张图有可能不连通!! 然后我们考虑对于每一个联通块,首先任意确定一个点,给它设最终值为x,然后进行搜索.(因为对于一个联通块而言,我们知道一个点的最终值,那么整个联通块上面点 ...
- Parallels Desktop 安装centos7
配置网卡: vi /etc/sysconfig/network-scripts/ifcfg-eth0 修改BOOTPROTO=dhcp,ONBOOT=yes. 保存后重启网卡 service netw ...
- PTA 笛卡尔树
笛卡尔树 (25 分) 笛卡尔树是一种特殊的二叉树,其结点包含两个关键字K1和K2.首先笛卡尔树是关于K1的二叉搜索树,即结点左子树的所有K1值都比该结点的K1值小,右子树则大.其次所有结点的K2关键 ...
- 如何卸载zabbix且删除
1.彻底卸载zabbix和删除残留文件 1 2 [root@localhost etc]# service zabbix stop //这个命令是停止服务 [root@localhost et ...
- Hbase Bulkload
前言 Apache HBase 是目前大数据系统中应用最为广泛的分布式数据库之一.我们经常面临向 HBase 中导入大量数据的情景,通常会选择使用标准的客户端 API 对 HBase 进行直接的操作, ...
- Python中的OS对路径的操作以及应用
目录处理 OS目录处理目录-->路径,文件夹 文件:html 1. 新建和删除一个目录import os #引入os目录from xx import xxos.mkdir("D:\\P ...
- Python中异常和JSON读写数据
异常可以防止出现一些不友好的信息返回给用户,有助于提升程序的可用性,在java中通过try ... catch ... finally来处理异常,在Python中通过try ... except .. ...
- pytest.fixture和普通函数调用
普通函数嗲用def one(): a="aaaaaaaaaaa" return a def test_one(): s=one() print (s) test_one() pyt ...