模板题……

\[\sum\limits_{i=1}^a\sum\limits_{j=1}^b[(i,j)=k] = \sum\limits_{i=1}^a\sum\limits_{j=1}^b[k|i][k|j][({i\over k},{j\over k})=1]=\sum\limits_{i=1}^{a\over k}\sum\limits_{j=1}^{b\over k}[(i,j)=1]
\]

继续化简

\[\sum\limits_{i=1}^{b\over k}\sum\limits_{j=1}^{d\over k}\sum\limits_{t|(i,j)}\mu(t)=\sum\limits_{i=1}^{b\over k}[t|i]\sum\limits_{j=1}^{d\over k}[t|j]\mu(t)=\sum\limits_{t=1}^{max({b\over k},{d\over k})}{\lfloor{{b\over k}\over t}\rfloor}{\lfloor{{d\over k}\over t}\rfloor}\mu(t)
\]

然后上反演整除分块即可

#include <bits/stdc++.h>
using namespace std;
#define int long long
const int N = 1000005; int pr[N*2],is[N*2],mu[N*2],cnt; signed main() {
mu[0]=mu[1]=1; is[1]=1;
for(int i=2;i<N;i++) {
if(is[i]==0) {
pr[++cnt]=i;
mu[i]=-1;
}
for(int j=1; j<=cnt&&pr[j]*i<N; ++j) {
is[pr[j]*i]=1;
if(i%pr[j]==0) {
mu[pr[j]*i]=0;
break;
}
else {
mu[pr[j]*i]=-mu[i];
}
}
}
for(int i=1;i<N;i++) mu[i]+=mu[i-1]; int a,b,d;
cin>>a>>b>>d;
a/=d; b/=d;
int ans = 0;
int m=min(a,b);
int l=1,r;
while(l<=m) {
r=min(a/(a/l),b/(b/l));
ans+=(mu[r]-mu[l-1])*(a/l)*(b/l);
l=r+1;
}
cout<<ans<<endl;
}

[P4450] 双亲数 - 莫比乌斯反演,整除分块的更多相关文章

  1. Bzoj1101: [POI2007]Zap 莫比乌斯反演+整除分块

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1101 莫比乌斯反演 1101: [POI2007]Zap 设 \(f(i)\) 表示 \(( ...

  2. 莫比乌斯反演&整除分块学习笔记

    整除分块 用于计算$\sum_{i=1}^n f(\lfloor{n/i} \rfloor)*i$之类的函数 整除的话其实很多函数值是一样的,对于每一块一样的商集中处理即可 若一个商的左边界为l,则右 ...

  3. 洛谷 P2257 - YY的GCD(莫比乌斯反演+整除分块)

    题面传送门 题意: 求满足 \(1 \leq x \leq n\),\(1 \leq y \leq m\),\(\gcd(x,y)\) 为质数的数对 \((x,y)\) 的个数. \(T\) 组询问. ...

  4. 洛谷 - P2257 - YY的GCD - 莫比乌斯反演 - 整除分块

    https://www.luogu.org/problemnew/show/P2257 求 \(n,m\) 中 \(gcd(i,j)==p\) 的数对的个数 求 $\sum\limits_p \sum ...

  5. [POI2007]ZAP-Queries (莫比乌斯反演+整除分块)

    [POI2007]ZAP-Queries \(solution:\) 唉,数论实在有点烂了,昨天还会的,今天就不会了,周末刚证明的,今天全忘了,还不如早点写好题解. 这题首先我们可以列出来答案就是: ...

  6. 【BZOJ2045】双亲数 莫比乌斯反演

    [BZOJ2045]双亲数 Description 小D是一名数学爱好者,他对数字的着迷到了疯狂的程度. 我们以d = gcd(a, b)表示a.b的最大公约数,小D执著的认为,这样亲密的关系足可以用 ...

  7. [国家集训队] Crash的数字表格 - 莫比乌斯反演,整除分块

    考虑到\(lcm(i,j)=\frac{ij}{gcd(i,j)}\) \(\sum_{i=1}^n\sum_{j=1}^m\frac{ij}{gcd(i,j)}\) \(\sum_{d=1}^{n} ...

  8. 洛谷 P5518 - [MtOI2019]幽灵乐团 / 莫比乌斯反演基础练习题(莫比乌斯反演+整除分块)

    洛谷题面传送门 一道究极恶心的毒瘤六合一题,式子推了我满满两面 A4 纸-- 首先我们可以将式子拆成: \[ans=\prod\limits_{i=1}^A\prod\limits_{j=1}^B\p ...

  9. P2568 莫比乌斯反演+整除分块

    #include<bits/stdc++.h> #define LL long long using namespace std; ; bool vis[maxn]; int prime[ ...

随机推荐

  1. python爬虫2:按html标签提取信息和中文域名处理(BeautifulSoup用法初步)

    #!/usr/bin/env python # -*- coding: utf- -*- # python3 import string import urllib from urllib impor ...

  2. 剑指offer-面试题59_1-滑动窗口的最大值-数组

    /* 题目: 链接:https://www.nowcoder.com/questionTerminal/1624bc35a45c42c0bc17d17fa0cba788 来源:牛客网 给定一个数组和滑 ...

  3. DolphinScheduler源码分析

    DolphinScheduler源码分析 本博客是基于1.2.0版本进行分析,与最新版本的实现有一些出入,还请读者辩证的看待本源码分析.具体细节可能描述的不是很准确,仅供参考 源码版本 1.2.0 技 ...

  4. 一个C语言程序是由( )组成?

    A) 一个主程序和若干子程序组成 B)一个或多个函数组成 C) 若干过程组成 D) 若干子程序组成 正确答案 B 解析 [解析] 一个C源程序是由一个main函数和若干个其他函数组成的.函数是C程序的 ...

  5. 洛谷新手题 P1028 数的计算题解

    题目描述 我们要求找出具有下列性质数的个数(包含输入的自然数nn): 先输入一个自然数nn(n \le 1000n≤1000),然后对此自然数按照如下方法进行处理: 不作任何处理; 在它的左边加上一个 ...

  6. 题解【CF1311F Moving Points】

    \[ \texttt{Preface} \] 赛时,把 " 任意时刻 " 理解成 " 整数时刻 " 了,看起来一脸不可做的亚子,还各种推式子. 话说我为什么觉得 ...

  7. java.lang.ClassCastException:java.util.LinkedHashMap不能转换为com.testing.models.xxx

    后台接收前台的json字符串 转pojo 问题(Object 对应定义的pojo) ObjectMapper mapper=new ObjectMapper(); Object object = ma ...

  8. wordpress<=4.6版本任意命令执行漏洞

    漏洞简述 当WordPress 使用 PHPMailer 组件向用户发送邮件.攻击者在找回密码时会使用PHPmailer发送重置密码的邮件,利用substr(字符串截取函数).$run(系统调用函数) ...

  9. Java泛型(T)与通配符?

    前言:使用泛型的目的是利用Java编译机制,在编译过程中帮我们检测代码中不规范的有可能导致程序错误的代码.例如,我们都知道list容器可以持有任何类型的数据,所以我们可以把String类型和Integ ...

  10. “石家庄铁道大学软件工程系学生学籍管理系统2019版”java小程序制作分享

    首先附上完整代码: import java.util.Scanner; public class SocreInformation { public SocreInformation(){}; pub ...