Problem: time series forecasting

Challenge: forecasting for non-stationary signals and multiple future steps prediction

?? how to deal with non-stationary datasets??

Introduction

one-step prediction problem VS multi-step prediction;

multi-step forecasting requires to accurately describe time series evolution.

limitation of the euclidean loss(MSE): in non-stationary context;

PP: Shape and time distortion loss for training deep time series forecasting models的更多相关文章

  1. Training (deep) Neural Networks Part: 1

    Training (deep) Neural Networks Part: 1 Nowadays training deep learning models have become extremely ...

  2. Training Deep Neural Networks

    http://handong1587.github.io/deep_learning/2015/10/09/training-dnn.html  //转载于 Training Deep Neural ...

  3. PP: Multi-Horizon Time Series Forecasting with Temporal Attention Learning

    Problem: multi-horizon probabilistic forecasting tasks; Propose an end-to-end framework for multi-ho ...

  4. a Javascript library for training Deep Learning models

    w强化算法和数学,来迎接机器学习.神经网络. http://cs.stanford.edu/people/karpathy/convnetjs/ ConvNetJS is a Javascript l ...

  5. PP: Think globally, act locally: A deep neural network approach to high-dimensional time series forecasting

    Problem: high-dimensional time series forecasting ?? what is "high-dimensional" time serie ...

  6. [Xavier] Understanding the difficulty of training deep feedforward neural networks

    目录 概 主要内容 Glorot X, Bengio Y. Understanding the difficulty of training deep feedforward neural netwo ...

  7. 论文翻译:BinaryConnect: Training Deep Neural Networks with binary weights during propagations

    目录 摘要 1.引言 2.BinaryConnect 2.1 +1 or -1 2.2确定性与随机性二值化 2.3 Propagations vs updates 2.4 Clipping 2.5 A ...

  8. 论文翻译:BinaryNet: Training Deep Neural Networks with Weights and Activations Constrained to +1 or −1

    目录 摘要 引言 1.BinaryNet 符号函数 梯度计算和累积 通过离散化传播梯度 一些有用的成分 算法1 使用BinaryNet训练DNN 算法2 批量标准化转换(Ioffe和Szegedy,2 ...

  9. Xavier——Understanding the difficulty of training deep feedforward neural networks

    1. 摘要 本文尝试解释为什么在深度的神经网络中随机初始化会让梯度下降表现很差,并且在此基础上来帮助设计更好的算法. 作者发现 sigmoid 函数不适合深度网络,在这种情况下,随机初始化参数会让较深 ...

随机推荐

  1. oo第三次作业--jml

    1.首先我们应该了解什么是jml,jml是java modeling language的缩写,是一种为java规格化设计的标识语言,简单来说,就是描述“干什么”的标准语言(跟注释差不多,但是是标准化注 ...

  2. jmeter脚本调试过程

    1.添加监听器:查看结果树,再回放脚本 2.权限验证,例如:cookies a.谷歌浏览器F12获取session

  3. Go并发模式代码示例

    演讲稿:Go Concurrency Patterns Youtube视频 作者:Rob Pike 练习题目:谷歌搜索:一个虚拟框架 谷歌搜索1.0 PPT从43页开始:https://talks.g ...

  4. 如何将文本放置在div的底部显示呢?

    转自:将文本定位于div的底部的方法  摘要: 下文讲述将文本放于div的底部的两种方法,如下所示: 实现思路: 思路1:采用绝对定位的方式,将其放置于div的底部 思路2:使用Line-height ...

  5. springboot打成jar包并携带第三方jar

    1.修改打包方式为jar <packaging>jar</packaging> 2.添加第三方依赖到pom文件 我的第三方依赖包在resources目录下的lib目录下(地址可 ...

  6. 基于90nm CMOS技术的功能齐全的64Mb DDR3 STT-MRAM

    自旋转矩磁阻随机存取存储器(ST-MRAM)有望成为一种快速,高密度的非易失性存储器,可以增强各种应用程序的性能,特别是在用作数据存储中的非易失性缓冲器时设备和系统.为此,everspin开发了基于9 ...

  7. Kali Linux中Chrome浏览器不能启动的问题

    kali中自带了Chromium Web Browser,我点了几次没反应.我还以为是Chrome的版本问题.于是下载了Chrome的deb包. 安装中还解决了一个包依赖问题.安装成功还是不能启动.于 ...

  8. 任意指定一个key获取该key所处在哪个node节点

    需求:任意指定一个key获取该key所处在哪个node节点上. 说明:redis自带的命令可以知道一个key所属的slot,可以知道node master对应哪些slot,但没有key和node的对应 ...

  9. linux查看防火墙状态和对外开放的端口状态

    1.查看防火墙状态         查看防火墙状态 systemctl status firewalld         开启防火墙 systemctl start firewalld        ...

  10. [SDOI2009]晨跑[最小费用最大流]

    [SDOI2009]晨跑 最小费用最大流的板子题吧 令 \(i'=i+n\) \(i -> i'\) 建一条流量为1费用为0的边这样就不会对答案有贡献 其次是对 \(m\) 条边建 \(u'-& ...