Problem: time series forecasting

Challenge: forecasting for non-stationary signals and multiple future steps prediction

?? how to deal with non-stationary datasets??

Introduction

one-step prediction problem VS multi-step prediction;

multi-step forecasting requires to accurately describe time series evolution.

limitation of the euclidean loss(MSE): in non-stationary context;

PP: Shape and time distortion loss for training deep time series forecasting models的更多相关文章

  1. Training (deep) Neural Networks Part: 1

    Training (deep) Neural Networks Part: 1 Nowadays training deep learning models have become extremely ...

  2. Training Deep Neural Networks

    http://handong1587.github.io/deep_learning/2015/10/09/training-dnn.html  //转载于 Training Deep Neural ...

  3. PP: Multi-Horizon Time Series Forecasting with Temporal Attention Learning

    Problem: multi-horizon probabilistic forecasting tasks; Propose an end-to-end framework for multi-ho ...

  4. a Javascript library for training Deep Learning models

    w强化算法和数学,来迎接机器学习.神经网络. http://cs.stanford.edu/people/karpathy/convnetjs/ ConvNetJS is a Javascript l ...

  5. PP: Think globally, act locally: A deep neural network approach to high-dimensional time series forecasting

    Problem: high-dimensional time series forecasting ?? what is "high-dimensional" time serie ...

  6. [Xavier] Understanding the difficulty of training deep feedforward neural networks

    目录 概 主要内容 Glorot X, Bengio Y. Understanding the difficulty of training deep feedforward neural netwo ...

  7. 论文翻译:BinaryConnect: Training Deep Neural Networks with binary weights during propagations

    目录 摘要 1.引言 2.BinaryConnect 2.1 +1 or -1 2.2确定性与随机性二值化 2.3 Propagations vs updates 2.4 Clipping 2.5 A ...

  8. 论文翻译:BinaryNet: Training Deep Neural Networks with Weights and Activations Constrained to +1 or −1

    目录 摘要 引言 1.BinaryNet 符号函数 梯度计算和累积 通过离散化传播梯度 一些有用的成分 算法1 使用BinaryNet训练DNN 算法2 批量标准化转换(Ioffe和Szegedy,2 ...

  9. Xavier——Understanding the difficulty of training deep feedforward neural networks

    1. 摘要 本文尝试解释为什么在深度的神经网络中随机初始化会让梯度下降表现很差,并且在此基础上来帮助设计更好的算法. 作者发现 sigmoid 函数不适合深度网络,在这种情况下,随机初始化参数会让较深 ...

随机推荐

  1. idea创建基于maven的web项目

    1.点击create new project,选择maven,点击next 2.输入项目信息,点击finish 3.进入项目后,点击菜单File->Project Structure开始配置项目 ...

  2. spring boot 打包jar后访问classes文件夹的文件提示地址不存在

    报错内容:class path resource [client.p12] cannot be resolved to absolute file path because it does not r ...

  3. SpringBoot整合NoSql--(三)Redis集群

    (1)集群原理 在Redis集群中,所有的Redis节点彼此互联,节点内部使用二进制协议优化传输速度和带宽. 当一个节点挂掉后,集群中超过半数的节点检测失效时才认为该节点已失效.不同于Tomcat集群 ...

  4. Xilinx FPGA控制器的Everspin STT-DDR4设计指南

    自旋转移扭矩磁阻随机存取存储器(STT-MRAM)是一种持久性存储技术,可利用各种工业标准接口提供性能,持久性和耐用性. Everspin推出了STT-MRAM产品,该产品利用称为JE-DDR4的JE ...

  5. linux 下生成 ssh 公私钥

    生成命令 ssh-keygen -t rsa -C "763941715@qq.com" 密匙目录 cd ~/.ssh 公钥 id_rsa.pub 私钥 id_rsa

  6. 通过/dev/mem操作物理内存

    /dev/mem设备可以用来访问物理内存.下面一段应用程序的代码,实现了通过/dev/mem对物理内存空间中SRAM1的访问. #include <stdio.h> #include &l ...

  7. BizCharts使用采坑教程

      了不起的BizCharts 最近项目的管理后台都在用阿里粑粑开源的管理框架Ant Design Pro,说真话,还是比较好用的.该框架内部也封装了一些图标插件,但是在最近的一个项目中发现,这些图标 ...

  8. kali linux 渗透入门之基础准备-Burp Suite 代理设置

    一:安装火狐浏览器-插件与设置中文 打开浏览器,复制粘贴这条url: https://addons.mozilla.org/en-US/firefox/addon/chinese-simplified ...

  9. Html介绍,了解html与css关系

    学习web前端开发至少需要掌握:html,css,javascript,那么这3门基础语言主要是用来实现什么的?1>html是网页内容的载体.内容就是网页制作者放在网页上想要让用户刘安的信息,比 ...

  10. 洛谷P1464 Function  HDU P1579 Function Run Fun

    洛谷P1464 Function HDU P1579 Function Run Fun 题目描述 对于一个递归函数w(a,b,c) 如果a≤0 or b≤0 or c≤0就返回值11. 如果a> ...