PP: Shape and time distortion loss for training deep time series forecasting models
Problem: time series forecasting
Challenge: forecasting for non-stationary signals and multiple future steps prediction
?? how to deal with non-stationary datasets??
Introduction
one-step prediction problem VS multi-step prediction;
multi-step forecasting requires to accurately describe time series evolution.
limitation of the euclidean loss(MSE): in non-stationary context;
PP: Shape and time distortion loss for training deep time series forecasting models的更多相关文章
- Training (deep) Neural Networks Part: 1
Training (deep) Neural Networks Part: 1 Nowadays training deep learning models have become extremely ...
- Training Deep Neural Networks
http://handong1587.github.io/deep_learning/2015/10/09/training-dnn.html //转载于 Training Deep Neural ...
- PP: Multi-Horizon Time Series Forecasting with Temporal Attention Learning
Problem: multi-horizon probabilistic forecasting tasks; Propose an end-to-end framework for multi-ho ...
- a Javascript library for training Deep Learning models
w强化算法和数学,来迎接机器学习.神经网络. http://cs.stanford.edu/people/karpathy/convnetjs/ ConvNetJS is a Javascript l ...
- PP: Think globally, act locally: A deep neural network approach to high-dimensional time series forecasting
Problem: high-dimensional time series forecasting ?? what is "high-dimensional" time serie ...
- [Xavier] Understanding the difficulty of training deep feedforward neural networks
目录 概 主要内容 Glorot X, Bengio Y. Understanding the difficulty of training deep feedforward neural netwo ...
- 论文翻译:BinaryConnect: Training Deep Neural Networks with binary weights during propagations
目录 摘要 1.引言 2.BinaryConnect 2.1 +1 or -1 2.2确定性与随机性二值化 2.3 Propagations vs updates 2.4 Clipping 2.5 A ...
- 论文翻译:BinaryNet: Training Deep Neural Networks with Weights and Activations Constrained to +1 or −1
目录 摘要 引言 1.BinaryNet 符号函数 梯度计算和累积 通过离散化传播梯度 一些有用的成分 算法1 使用BinaryNet训练DNN 算法2 批量标准化转换(Ioffe和Szegedy,2 ...
- Xavier——Understanding the difficulty of training deep feedforward neural networks
1. 摘要 本文尝试解释为什么在深度的神经网络中随机初始化会让梯度下降表现很差,并且在此基础上来帮助设计更好的算法. 作者发现 sigmoid 函数不适合深度网络,在这种情况下,随机初始化参数会让较深 ...
随机推荐
- 「Kafka」Kafka中offset偏移量提交
在消费Kafka中分区的数据时,我们需要跟踪哪些消息是读取过的.哪些是没有读取过的.这是读取消息不丢失的关键所在. Kafka是通过offset顺序读取事件的.如果一个消费者退出,再重启的时候,它知道 ...
- 「Flink」RocksDB介绍以及Flink对RocksDB的支持
RocksDB介绍 RocksDB简介 RocksDB是基于C++语言编写的嵌入式KV存储引擎,它不是一个分布式的DB,而是一个高效.高性能.单点的数据库引擎.它是由Facebook基于Google开 ...
- View Binding初探
参考翻译:https://developer.android.google.cn/topic/libraries/view-binding View Binding是一项功能,使您可以更轻松地编写与视 ...
- JS淘宝小广告
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8 ...
- npm ERR! Failed at the node-sass@4.13.0 postinstall script
node-sass 的数据源没设置 npm config set sass_binary_site=https://npm.taobao.org/mirrors/node-sass 重新 npm in ...
- iMacros 入门教程-基础函数介绍(3)
imacros 的 PAUSE 函数用法 这个函数的作用是暂停程序的运行,也就是断点. 对于有时运行到某一步需要输入内容时,或者需要调试时非常有用 如果你混着 pause 和 wait 一起用,那么当 ...
- Mac 下如何判断 WIFI 的极限传输速度还有信号强度?
每当你加入一个无线网络后,按住Option键并点击屏幕右上角的Wi-Fi图标,就会发现除了平常的各种网络外,还出现了关于网络连接技术细节的列表. 比如说,如果想知道信号强度的信息,则需要尤其关注列表中 ...
- 如何使用Acrok Video Converter Ultimate转换视频?
Acrok Video Converter Ultimate是一个功能强大的程序,可以帮助您转换几乎任何类型的视频格式,例如MKV,AVI,WMV,MP4,MOV,MTS,MXF,DVD,蓝光等. 下 ...
- 吴裕雄--天生自然 PYTHON数据分析:人类发展报告——HDI, GDI,健康,全球人口数据数据分析
import pandas as pd # Data analysis import numpy as np #Data analysis import seaborn as sns # Data v ...
- Fragment基础学习
https://blog.csdn.net/lmj623565791/article/details/37970961