Problem: time series forecasting

Challenge: forecasting for non-stationary signals and multiple future steps prediction

?? how to deal with non-stationary datasets??

Introduction

one-step prediction problem VS multi-step prediction;

multi-step forecasting requires to accurately describe time series evolution.

limitation of the euclidean loss(MSE): in non-stationary context;

PP: Shape and time distortion loss for training deep time series forecasting models的更多相关文章

  1. Training (deep) Neural Networks Part: 1

    Training (deep) Neural Networks Part: 1 Nowadays training deep learning models have become extremely ...

  2. Training Deep Neural Networks

    http://handong1587.github.io/deep_learning/2015/10/09/training-dnn.html  //转载于 Training Deep Neural ...

  3. PP: Multi-Horizon Time Series Forecasting with Temporal Attention Learning

    Problem: multi-horizon probabilistic forecasting tasks; Propose an end-to-end framework for multi-ho ...

  4. a Javascript library for training Deep Learning models

    w强化算法和数学,来迎接机器学习.神经网络. http://cs.stanford.edu/people/karpathy/convnetjs/ ConvNetJS is a Javascript l ...

  5. PP: Think globally, act locally: A deep neural network approach to high-dimensional time series forecasting

    Problem: high-dimensional time series forecasting ?? what is "high-dimensional" time serie ...

  6. [Xavier] Understanding the difficulty of training deep feedforward neural networks

    目录 概 主要内容 Glorot X, Bengio Y. Understanding the difficulty of training deep feedforward neural netwo ...

  7. 论文翻译:BinaryConnect: Training Deep Neural Networks with binary weights during propagations

    目录 摘要 1.引言 2.BinaryConnect 2.1 +1 or -1 2.2确定性与随机性二值化 2.3 Propagations vs updates 2.4 Clipping 2.5 A ...

  8. 论文翻译:BinaryNet: Training Deep Neural Networks with Weights and Activations Constrained to +1 or −1

    目录 摘要 引言 1.BinaryNet 符号函数 梯度计算和累积 通过离散化传播梯度 一些有用的成分 算法1 使用BinaryNet训练DNN 算法2 批量标准化转换(Ioffe和Szegedy,2 ...

  9. Xavier——Understanding the difficulty of training deep feedforward neural networks

    1. 摘要 本文尝试解释为什么在深度的神经网络中随机初始化会让梯度下降表现很差,并且在此基础上来帮助设计更好的算法. 作者发现 sigmoid 函数不适合深度网络,在这种情况下,随机初始化参数会让较深 ...

随机推荐

  1. Lucene之分析器

    什么是分析器? 分析(Analysis)在Lucene中指的是将域(Field)文本转换为最基本的索引表示单元—项(Term)的过程. 分析器(Analyzer)对分析操作进行了封装,通过执行一系列操 ...

  2. html基本标签表单实现交互原理,单选框,复选框,下拉框介绍

    表单是什么?表单是前端和服务器做交互的一种机制,表单收集用户输入信息,之后发送或者提交给服务器.用户在输入的信息称之为内容,内容的文本分为普通和密码型,用户通过单选框.复选框.下拉框(也就是下拉菜单) ...

  3. JAVA面向对象 - 方法重载与覆盖

    方法重载 方法重载就是在类的同种实现方式,到底采用哪种方式,取决与调用者给出的参数.方法重载特点是方法名相同,方法的参数类型,个数,顺序至少有一项不同,方法返回类型可以不同,方法的修饰符可以不同,只是 ...

  4. python——面向对象,继承

    """继承:子类继承父类1.单继承,多继承2. 子类调用或重用父类的同名属性和方法3. 多层4.私有属性和私有方法class 类名(object<父类>)&q ...

  5. Angular修改Port文件一览

    \protractor.conf.js\README.md\node_modules\angular-cli\README.md\node_modules\angular-cli\blueprints ...

  6. 【NLP】暑假课作业3 - 词性标注(简单词频概率统计)

    作业任务: 使用98年人民日报语料库进行词性标注训练及测试. 作业输入: 98年人民日报语料库(1998-01-105-带音.txt),用80%的数据作为训练集,20%的数据作为验证集. 运行环境: ...

  7. Vue自定义全局Toast和Loading

    如果我们的Vue项目中没有用到任何UI框架的话,为了更好的用户体验,肯定会用到loading和toast.那么我们就自定义这两个组件吧. 1.Toast组件 首先,在common下新建global文件 ...

  8. Codeforces Round #622(Div 2) C1. Skyscrapers (easy version)

    题目链接: C1. Skyscrapers (easy version) 题目描述: 有一行数,使得整个序列满足 先递增在递减(或者只递增,或者只递减) ,每个位置上的数可以改变,但是最大不能超过原来 ...

  9. 使用css鼠标移动到图片放大效果

      <!DOCTYPE html>  <html>      <head>          <meta charset="UTF-8"& ...

  10. 【Hibernate】hibernate原生sql利用transformers返回多表自定义类型对象

    大致结构: Person(人): id,name,age,bookId Book(书):id,bookName Author(作者):id,authorName,bookId 一个人 只有 一本书,一 ...