洛谷$P4099\ [HEOI2013]\ SAO\ dp$
正解:树形$dp$
解题报告:
考虑设$f_i$表示点$i$的子树内的拓扑序排列方案数有多少个.
发现这样不好合并儿子节点和父亲节点.于是加一维,设$f_{i,j}$表示点$i$的子树中点$i$在拓扑序中排名为$j$的拓扑序排列方案数有多少个$QwQ$
然后说下儿子节点$x$和父亲节点$y$的合并,就枚举下点$y$前面有多少个原属于$y$的点有多少个原属于$x$的点.
若要求是$x>y$,就$f_{y,k}=\sum_{i=1}^{k} \sum_{j=k-i+1}^{size_x} f_{y,i}\cdot f_{x,j}\cdot C(k-1,i-1)\cdot C(size_u+size_v-k,size_u-i)$(昂这个$size$是当前的$size$鸭$QwQ$.
大概解释下,,,?就枚举原$y$的排名是$i$,原$x$的排名是$j$,目标状态$y$的排名是$k$.
然后$y$之前有$C(k-1,i-1)$的方案数,$y$之后有$C(size_u+size_v-k,size_u-i)$的方案数,总的就$f_{y,i}\cdot f_{x,j}\cdot C(k-1,i-1)\cdot C(size_u+size_v-k,size_u-i)$.然后关于范围这个随便算下就星趴,,,?首先$i$是显然的?然后$j$有因为要求$x$在$y$后面所以就要$j-1\geq k-i,j\geq k-i+1$,$over$
$x<y$差不多,不说了$QwQ$
然后发现复杂度不太可,考虑咋优化$QwQ$.
发现转移式中关于$j$只出现了一个$f_{x,j}$.所以直接前缀和优化掉就完事$QwQ.$
然后就欧克了,$over$
对了这题有道很相似的题改下就双倍经验辣,这儿$QwQ$
洛谷$P4099\ [HEOI2013]\ SAO\ dp$的更多相关文章
- 洛谷 P4099 - [HEOI2013]SAO(树形 dp)
题面传送门 题意: 有一个有向图 \(G\),其基图是一棵树 求它拓扑序的个数 \(\bmod (10^9+7)\) \(n \in [1,1000]\) 如果你按照拓扑排序的方法来做,那恐怕你已经想 ...
- 洛谷P4099 [HEOI2013]SAO(树形dp)
传送门 HEOI的题好珂怕啊(各种意义上) 然后考虑树形dp,以大于为例 设$f[i][j]$表示$i$这个节点在子树中排名第$j$位时的总方案数(因为实际只与相对大小有关,与实际数值无关) 我们考虑 ...
- P4099 [HEOI2013]SAO
P4099 [HEOI2013]SAO 贼板子有意思的一个题---我()竟然没看题解 有一张连成树的有向图,球拓扑序数量. 树形dp,设\(f[i][j]\)表示\(i\)在子树中\(i\)拓扑序上排 ...
- P4099 [HEOI2013]SAO(树形dp)
P4099 [HEOI2013]SAO 我们设$f[u][k]$表示以拓扑序编号为$k$的点$u$,以$u$为根的子树中的元素所组成的序列方案数 蓝后我们在找一个以$v$为根的子树. 我们的任务就是在 ...
- [BZOJ3167][P4099][HEOI2013]SAO(树形DP)
题目描述 Welcome to SAO ( Strange and Abnormal Online).这是一个 VR MMORPG, 含有 n 个关卡.但是,挑战不同关卡的顺序是一个很大的问题. 有 ...
- 洛谷 4099 [HEOI2013]SAO——树形DP
题目:https://www.luogu.org/problemnew/show/P4099 结果还是看了题解才会…… 关键是状态,f[ i ][ j ] 表示 i 子树. i 号点是第 j 个出现的 ...
- luogu P4099 [HEOI2013]SAO
传送门 吐槽题目标题 这个依赖关系是个树,可以考虑树型dp,设f_i表示子树i的答案 因为这是个序列问题,是要考虑某个数的位置的,所以设\(f_{i,j}\)表示子树i构成的序列,i在第j个位置的方案 ...
- 【做题记录】 [HEOI2013]SAO
P4099 [HEOI2013]SAO 类型:树形 \(\text{DP}\) 这里主要补充一下 \(O(n^3)\) 的 \(\text{DP}\) 优化的过程,基础转移方程推导可以参考其他巨佬的博 ...
- 3167: [Heoi2013]Sao [树形DP]
3167: [Heoi2013]Sao 题意: n个点的"有向"树,求拓扑排序方案数 Welcome to Sword Art Online!!! 一开始想错了...没有考虑一个点 ...
随机推荐
- PHP header 的7种用法
这篇文章介绍的内容是关于PHP header()的7种用法 ,有着一定的参考价值,现在分享给大家,有需要的朋友可以参考一下 PHP header 的7种用法 1. 跳转页面 header('Locat ...
- React Native声明属性和属性确认
属性声明 因为用React Native创建的自定义组件可以复用, 我们开发过程中可能一个项目组有多个人同时开发,其他同事可能会用到我们自定义的组件, 但是他们使用的时候很容易忘记使用某些属性,这时候 ...
- 你真的知道你看到的UTF-8字符是什么吗?
翻译自http://www.pixelstech.net/article/1397877200-You-know-what-UTF-8-is-when-you-see-it- Source : son ...
- IDEA使用中文api鼠标提示的设置
最近都在用IDEA来练习,发现有的方面确实比eclipse好用,eclipse里面可添加中文的API 提示,对初期的我帮助很大,但是IDEA却没有找到添加的地方,一直以来还以为不支持这个功能,比较遗憾 ...
- Error While Loading Shared Libraries, Cannot Open Shared Object File
In the "I wish the Internet had an actual correct answer" category comes a question from a ...
- How do I cover the “no results” text in UISearchDisplayController's searchResultTableView?
How do I cover the "no results" text in UISearchDisplayController's searchResultTableView? ...
- python selenium 获取对象输入的属性值
.get_attribute("value") from selenium import webdriver import time driver=webdriver.Firefo ...
- 2018-8-10-UWP-WPF-解决-xaml-设计显示异常
title author date CreateTime categories UWP WPF 解决 xaml 设计显示异常 lindexi 2018-08-10 19:16:53 +0800 201 ...
- 详解ThinkPHP支持的URL模式有四种普通模式、PATHINFO、REWRITE和兼容模式
URL模式 URL_MODEL设置 普通模式 0 PATHINFO模式 1 REWRITE模式 2 兼容模式 3 如果你整个应用下面的模块都是采用统一的URL模式 ...
- ubuntu 运行级别initlevel
Linux 系统任何时候都运行在一个指定的运行级上,并且不同的运行级的程序和服务都不同,所要完成的工作和要达到的目的都不同,系统可以在这些运行级之间进行切换,以完成不同的工作.Ubuntu 的系统运行 ...