正解:树形$dp$

解题报告:

传送门$QwQ$.

考虑设$f_i$表示点$i$的子树内的拓扑序排列方案数有多少个.

发现这样不好合并儿子节点和父亲节点.于是加一维,设$f_{i,j}$表示点$i$的子树中点$i$在拓扑序中排名为$j$的拓扑序排列方案数有多少个$QwQ$

然后说下儿子节点$x$和父亲节点$y$的合并,就枚举下点$y$前面有多少个原属于$y$的点有多少个原属于$x$的点.

若要求是$x>y$,就$f_{y,k}=\sum_{i=1}^{k} \sum_{j=k-i+1}^{size_x} f_{y,i}\cdot f_{x,j}\cdot C(k-1,i-1)\cdot C(size_u+size_v-k,size_u-i)$(昂这个$size$是当前的$size$鸭$QwQ$.

大概解释下,,,?就枚举原$y$的排名是$i$,原$x$的排名是$j$,目标状态$y$的排名是$k$.

然后$y$之前有$C(k-1,i-1)$的方案数,$y$之后有$C(size_u+size_v-k,size_u-i)$的方案数,总的就$f_{y,i}\cdot f_{x,j}\cdot C(k-1,i-1)\cdot C(size_u+size_v-k,size_u-i)$.然后关于范围这个随便算下就星趴,,,?首先$i$是显然的?然后$j$有因为要求$x$在$y$后面所以就要$j-1\geq k-i,j\geq k-i+1$,$over$

$x<y$差不多,不说了$QwQ$

然后发现复杂度不太可,考虑咋优化$QwQ$.

发现转移式中关于$j$只出现了一个$f_{x,j}$.所以直接前缀和优化掉就完事$QwQ.$

然后就欧克了,$over$

对了这题有道很相似的题改下就双倍经验辣,这儿$QwQ$

洛谷$P4099\ [HEOI2013]\ SAO\ dp$的更多相关文章

  1. 洛谷 P4099 - [HEOI2013]SAO(树形 dp)

    题面传送门 题意: 有一个有向图 \(G\),其基图是一棵树 求它拓扑序的个数 \(\bmod (10^9+7)\) \(n \in [1,1000]\) 如果你按照拓扑排序的方法来做,那恐怕你已经想 ...

  2. 洛谷P4099 [HEOI2013]SAO(树形dp)

    传送门 HEOI的题好珂怕啊(各种意义上) 然后考虑树形dp,以大于为例 设$f[i][j]$表示$i$这个节点在子树中排名第$j$位时的总方案数(因为实际只与相对大小有关,与实际数值无关) 我们考虑 ...

  3. P4099 [HEOI2013]SAO

    P4099 [HEOI2013]SAO 贼板子有意思的一个题---我()竟然没看题解 有一张连成树的有向图,球拓扑序数量. 树形dp,设\(f[i][j]\)表示\(i\)在子树中\(i\)拓扑序上排 ...

  4. P4099 [HEOI2013]SAO(树形dp)

    P4099 [HEOI2013]SAO 我们设$f[u][k]$表示以拓扑序编号为$k$的点$u$,以$u$为根的子树中的元素所组成的序列方案数 蓝后我们在找一个以$v$为根的子树. 我们的任务就是在 ...

  5. [BZOJ3167][P4099][HEOI2013]SAO(树形DP)

    题目描述 Welcome to SAO ( Strange and Abnormal Online).这是一个 VR MMORPG, 含有 n 个关卡.但是,挑战不同关卡的顺序是一个很大的问题. 有 ...

  6. 洛谷 4099 [HEOI2013]SAO——树形DP

    题目:https://www.luogu.org/problemnew/show/P4099 结果还是看了题解才会…… 关键是状态,f[ i ][ j ] 表示 i 子树. i 号点是第 j 个出现的 ...

  7. luogu P4099 [HEOI2013]SAO

    传送门 吐槽题目标题 这个依赖关系是个树,可以考虑树型dp,设f_i表示子树i的答案 因为这是个序列问题,是要考虑某个数的位置的,所以设\(f_{i,j}\)表示子树i构成的序列,i在第j个位置的方案 ...

  8. 【做题记录】 [HEOI2013]SAO

    P4099 [HEOI2013]SAO 类型:树形 \(\text{DP}\) 这里主要补充一下 \(O(n^3)\) 的 \(\text{DP}\) 优化的过程,基础转移方程推导可以参考其他巨佬的博 ...

  9. 3167: [Heoi2013]Sao [树形DP]

    3167: [Heoi2013]Sao 题意: n个点的"有向"树,求拓扑排序方案数 Welcome to Sword Art Online!!! 一开始想错了...没有考虑一个点 ...

随机推荐

  1. PHP header 的7种用法

    这篇文章介绍的内容是关于PHP header()的7种用法 ,有着一定的参考价值,现在分享给大家,有需要的朋友可以参考一下 PHP header 的7种用法 1. 跳转页面 header('Locat ...

  2. React Native声明属性和属性确认

    属性声明 因为用React Native创建的自定义组件可以复用, 我们开发过程中可能一个项目组有多个人同时开发,其他同事可能会用到我们自定义的组件, 但是他们使用的时候很容易忘记使用某些属性,这时候 ...

  3. 你真的知道你看到的UTF-8字符是什么吗?

    翻译自http://www.pixelstech.net/article/1397877200-You-know-what-UTF-8-is-when-you-see-it- Source : son ...

  4. IDEA使用中文api鼠标提示的设置

    最近都在用IDEA来练习,发现有的方面确实比eclipse好用,eclipse里面可添加中文的API 提示,对初期的我帮助很大,但是IDEA却没有找到添加的地方,一直以来还以为不支持这个功能,比较遗憾 ...

  5. Error While Loading Shared Libraries, Cannot Open Shared Object File

    In the "I wish the Internet had an actual correct answer" category comes a question from a ...

  6. How do I cover the “no results” text in UISearchDisplayController's searchResultTableView?

    How do I cover the "no results" text in UISearchDisplayController's searchResultTableView? ...

  7. python selenium 获取对象输入的属性值

    .get_attribute("value") from selenium import webdriver import time driver=webdriver.Firefo ...

  8. 2018-8-10-UWP-WPF-解决-xaml-设计显示异常

    title author date CreateTime categories UWP WPF 解决 xaml 设计显示异常 lindexi 2018-08-10 19:16:53 +0800 201 ...

  9. 详解ThinkPHP支持的URL模式有四种普通模式、PATHINFO、REWRITE和兼容模式

    URL模式     URL_MODEL设置 普通模式    0 PATHINFO模式     1 REWRITE模式     2 兼容模式     3 如果你整个应用下面的模块都是采用统一的URL模式 ...

  10. ubuntu 运行级别initlevel

    Linux 系统任何时候都运行在一个指定的运行级上,并且不同的运行级的程序和服务都不同,所要完成的工作和要达到的目的都不同,系统可以在这些运行级之间进行切换,以完成不同的工作.Ubuntu 的系统运行 ...