傻逼依赖背包的优化

#include<bits/stdc++.h>
using namespace std;
#define N 205
struct Edge{int to,nxt;}e[N<<];
int head[N],tot,n,m,a[N];
void init(){memset(head,-,sizeof head);tot=;}
void add(int u,int v){
e[tot].to=v;e[tot].nxt=head[u];head[u]=tot++;
}
int dp[N][N];
void dfs(int u,int pre,int C){
for(int i=head[u];i!=-;i=e[i].nxt){
int v=e[i].to;
if(v==pre)continue;
for(int j=;j<=C-;j++)
dp[v][j]=dp[u][j]+a[v];
dfs(v,u,C-);
for(int j=;j<=C;j++)
dp[u][j]=max(dp[u][j],dp[v][j-]);
}
} int main(){
while(cin>>n>>m && n){
init();
for(int i=;i<=n;i++){
int fa;cin>>fa>>a[i];
add(i,fa);add(fa,i);
}
memset(dp,,sizeof dp);
dfs(,,m);
int ans=;
for(int j=;j<=m;j++)
ans=max(ans,dp[][j]);
cout<<ans<<endl;
}
}

依赖背包优化——hdu1561的更多相关文章

  1. 依赖背包优化——ural1018,金明的预算方案

    经典题了,网上博客一大堆O(nCC)的做法,其实是可以将复杂度降到O(nC)的 参考依赖背包优化(泛化物品的并) 根据背包九讲,求两个泛化物品的和复杂度是O(CC)的,所以依赖背包暴力求解的复杂度是O ...

  2. HDU - 6643: Ridiculous Netizens(点分治+依赖背包+空间优化)

    题意:给定带点权的树,问多少个连通块,其乘积<=M; N<=2000,M<1e6; 思路:连通块-->分治: 由于普通的树DP在合并的时候复杂度会高一个M,所以用依赖背包来做. ...

  3. hdu1561 树形dp,依赖背包

    多重背包是某个物品可以选择多次,要把对物品数的枚举放在对w枚举外面 分组背包是某组的物品只能选一个,要把对每组物品的枚举放在对w枚举内侧 依赖背包是多层的分组背包,利用树形结构建立依赖关系,每个结点都 ...

  4. BZOJ.4182.Shopping(点分治/dsu on tree 树形依赖背包 多重背包 单调队列)

    BZOJ 题目的限制即:给定一棵树,只能任选一个连通块然后做背包,且每个点上的物品至少取一个.求花费为\(m\)时最大价值. 令\(f[i][j]\)表示在点\(i\),已用体积为\(j\)的最大价值 ...

  5. BZOJ.4910.[SDOI2017]苹果树(树形依赖背包 DP 单调队列)

    BZOJ 洛谷 \(shadowice\)已经把他的思路说的很清楚了,可以先看一下会更好理解? 这篇主要是对\(Claris\)题解的简单说明.与\(shadowice\)的做法还是有差异的(比如并没 ...

  6. Gym - 100502G Outing (强连通缩点+树形依赖背包)

    题目链接 问题:有n个人,最多选k个,如果选了某个人就必须选他指定的另一个人,问最多能选多少个人. 将每个人所指定的人向他连一条单向边,则每一个点都有唯一的前驱,形成的图是个基环树森林,在同一个强连通 ...

  7. 依赖背包变形——poj1947(经典)

    /*这题显然不适用依赖背包的优化,因为不能保证根是必选的,但是可以按照常规依赖背包的思路进行转移,即每次对一个儿子进行C^2的转移 还是树形的背包,dp[u][j]表示u的子树里,切割出一个大小为j的 ...

  8. 依赖背包变形(经典)——poj1155

    这个题用优化后的依赖背包做难以实现,所以用常规的泛化物品的和来做即可 每个节点的容量定义为这个节点下的叶子结点个数,dp[u][j]用来表示节点u下选取j个物品的最大收益,最后从m-0查询dp[1][ ...

  9. Entity Framework 实体框架的形成之旅--利用Unity对象依赖注入优化实体框架(2)

    在本系列的第一篇随笔<Entity Framework 实体框架的形成之旅--基于泛型的仓储模式的实体框架(1)>中介绍了Entity Framework 实体框架的一些基础知识,以及构建 ...

随机推荐

  1. grpc协议--客户端构造

    由于服务端不在构造,已经构造完成不做构造 gRPC 接口名字为service,proto文件内有定义 1.本目录生成grpc文件 python -m grpc_tools.protoc -I. --p ...

  2. js 实现弹出层效果

    代码: <!DOCTYPE html> <html> <head> <meta charset="utf-8" /> <tit ...

  3. HIVE(2) 之 常用函数

    LAG(col,n,DEFAULT) 用于统计窗口内往上第n行值 第一个参数为列名,第二个参数为往上第n行(可选,默认为1),第三个参数为默认值(当往上第n行为NULL时候,取默认值,如不指定,则为N ...

  4. Shiro学习(17)OAuth2集成

    目前很多开放平台如新浪微博开放平台都在使用提供开放API接口供开发者使用,随之带来了第三方应用要到开放平台进行授权的问题,OAuth就是干这个的,OAuth2是OAuth协议的下一个版本,相比OAut ...

  5. ueditor不能上传mp4格式的视频--解决方案

    1.ueditor.all.js 去掉所有的 type="application/x-shockwave-flash" 2.ueditor.all.min.js 去掉所有的 typ ...

  6. NOIp2018集训test-10-23

    上午考了一套sb题,但是没有人AK.李巨290虐场. 下午又考了一套sb题,李巨AK虐场.%%% T1 % 中国剩余定理好像做不了啊,我一直在想如何用CRT做,然后就GG了. 然而正解是bike当初说 ...

  7. 学习android文档 -- Adding the Action Bar

    1. Setting Up the Action Bar:users-sdk version 11以上可以使用holo主题:如果不使用holo主题,或者sdk版本较低,则需要在manifest文件的& ...

  8. A. Srdce and Triangle--“今日头条杯”首届湖北省大学程序设计竞赛(网络同步赛)

    如下图这是“今日头条杯”首届湖北省大学程序设计竞赛的第一题,作为赛后补题 题目描述:链接点此 这套题的github地址(里面包含了数据,题解,现场排名):点此 Let  be a regualr tr ...

  9. fatal error C1047: 对象或库文件“.\x64\Release\Des.obj”是使用比创建其他对象所用编译器旧的编译器创建的;请重新生成旧的对象和库

    问题描述: 在把一个32位的dll编译成64位的时候提示上面的错误 解决办法: >属性->常规->项目默认值->全程序优化  将这里的默认项 "使用链接时间代码生成& ...

  10. windows 驱动开发 DDK与WDK WDM的区别

    1.首先,先从基础的东西说起,开发WINDOWS下的驱动程序,需要一个专门的开发包,如:开发JAVA程序,我们可能需要一个JDK,开发WINDOWS应用程序,我们需要WINDOWS的SDK,现在开发W ...