依赖背包优化——hdu1561
傻逼依赖背包的优化
#include<bits/stdc++.h>
using namespace std;
#define N 205
struct Edge{int to,nxt;}e[N<<];
int head[N],tot,n,m,a[N];
void init(){memset(head,-,sizeof head);tot=;}
void add(int u,int v){
e[tot].to=v;e[tot].nxt=head[u];head[u]=tot++;
}
int dp[N][N];
void dfs(int u,int pre,int C){
for(int i=head[u];i!=-;i=e[i].nxt){
int v=e[i].to;
if(v==pre)continue;
for(int j=;j<=C-;j++)
dp[v][j]=dp[u][j]+a[v];
dfs(v,u,C-);
for(int j=;j<=C;j++)
dp[u][j]=max(dp[u][j],dp[v][j-]);
}
} int main(){
while(cin>>n>>m && n){
init();
for(int i=;i<=n;i++){
int fa;cin>>fa>>a[i];
add(i,fa);add(fa,i);
}
memset(dp,,sizeof dp);
dfs(,,m);
int ans=;
for(int j=;j<=m;j++)
ans=max(ans,dp[][j]);
cout<<ans<<endl;
}
}
依赖背包优化——hdu1561的更多相关文章
- 依赖背包优化——ural1018,金明的预算方案
经典题了,网上博客一大堆O(nCC)的做法,其实是可以将复杂度降到O(nC)的 参考依赖背包优化(泛化物品的并) 根据背包九讲,求两个泛化物品的和复杂度是O(CC)的,所以依赖背包暴力求解的复杂度是O ...
- HDU - 6643: Ridiculous Netizens(点分治+依赖背包+空间优化)
题意:给定带点权的树,问多少个连通块,其乘积<=M; N<=2000,M<1e6; 思路:连通块-->分治: 由于普通的树DP在合并的时候复杂度会高一个M,所以用依赖背包来做. ...
- hdu1561 树形dp,依赖背包
多重背包是某个物品可以选择多次,要把对物品数的枚举放在对w枚举外面 分组背包是某组的物品只能选一个,要把对每组物品的枚举放在对w枚举内侧 依赖背包是多层的分组背包,利用树形结构建立依赖关系,每个结点都 ...
- BZOJ.4182.Shopping(点分治/dsu on tree 树形依赖背包 多重背包 单调队列)
BZOJ 题目的限制即:给定一棵树,只能任选一个连通块然后做背包,且每个点上的物品至少取一个.求花费为\(m\)时最大价值. 令\(f[i][j]\)表示在点\(i\),已用体积为\(j\)的最大价值 ...
- BZOJ.4910.[SDOI2017]苹果树(树形依赖背包 DP 单调队列)
BZOJ 洛谷 \(shadowice\)已经把他的思路说的很清楚了,可以先看一下会更好理解? 这篇主要是对\(Claris\)题解的简单说明.与\(shadowice\)的做法还是有差异的(比如并没 ...
- Gym - 100502G Outing (强连通缩点+树形依赖背包)
题目链接 问题:有n个人,最多选k个,如果选了某个人就必须选他指定的另一个人,问最多能选多少个人. 将每个人所指定的人向他连一条单向边,则每一个点都有唯一的前驱,形成的图是个基环树森林,在同一个强连通 ...
- 依赖背包变形——poj1947(经典)
/*这题显然不适用依赖背包的优化,因为不能保证根是必选的,但是可以按照常规依赖背包的思路进行转移,即每次对一个儿子进行C^2的转移 还是树形的背包,dp[u][j]表示u的子树里,切割出一个大小为j的 ...
- 依赖背包变形(经典)——poj1155
这个题用优化后的依赖背包做难以实现,所以用常规的泛化物品的和来做即可 每个节点的容量定义为这个节点下的叶子结点个数,dp[u][j]用来表示节点u下选取j个物品的最大收益,最后从m-0查询dp[1][ ...
- Entity Framework 实体框架的形成之旅--利用Unity对象依赖注入优化实体框架(2)
在本系列的第一篇随笔<Entity Framework 实体框架的形成之旅--基于泛型的仓储模式的实体框架(1)>中介绍了Entity Framework 实体框架的一些基础知识,以及构建 ...
随机推荐
- Eclipse编辑Spring配置文件xml时自动提示类class包名
第一步,先查看下自己的Eclipse是什么版本,步骤如下: 1.1 点击Eclipse菜单‘Help -> About Eclipse’,如下图: 1.2 点击Eclipse图标如下,看清楚哦 ...
- Delphi COM对象
作者:巴哈姆特 http://www.cnpack.org(转载请注明出处并保持完整) 如果没有接触过COM对象的话,你会觉得接口真的很麻烦,也许会有:“还不如直接定义一个类更方便”的想法. 的确, ...
- Java——异常的基本概念
1.异常的基本概念 1.1什么是异常 在使用计算机语言进行项目开发的过程中,即使程序员把代码写得尽善尽美,在系统的运行过程中仍然会遇到一些问题,因为很多问题不是靠代码能够避免的,比如:客户输入数据的格 ...
- 数论+乱搞——cf181B
/* 2-type B|D^k 3-type B|D-1 11-type B|D+1 6-type B质因子分解, 7-type 其他情况 3-type: (a*(D^4-1)+b*(D^3-1)+. ...
- Ext OOP基础
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- (转)OS: 生产者消费者问题(多进程+共享内存+信号量)
转:http://blog.csdn.net/yaozhiyi/article/details/7561759 一. 引子 时隔一年再次用到 cout 的时候,哥潸然泪下,这是一种久别重逢的感动,虽然 ...
- ACdream 1157 (cdq分治)
题目链接 Segments Time Limit: 4000/2000MS (Java/Others)Memory Limit: 20000/10000KB (Java/Others) Problem ...
- Android Telephony分析(七) ---- 接口扩展(异步转同步)
本文是基于上一篇<Android Telephony分析(六) —- 接口扩展(实践篇)>来写的.上一篇介绍的接口扩展的方法需要实现两部分代码:1. 从APP至RIL,发送请求:2. 从R ...
- 深入理解JAVA虚拟机原理之Dalvik虚拟机(三)
更多Android高级架构进阶视频学习请点击:https://space.bilibili.com/474380680 本文是Android虚拟机系列文章的第三篇,专门介绍Andorid系统上曾经使用 ...
- 几何问题 poj 1408
参考博客: 用向量积求线段焦点证明: 首先,我们设 (AD向量 × AC向量) 为 multi(ADC) : 那么 S三角形ADC = multi(ADC)/2 . 由三角形DPD1 与 三角形CPC ...