Spark-2.0原理分析-shuffle过程
shuffle概览
shuffle过程概览
shuffle数据流概览
shuffle数据流
shuffle工作流程
在运行job时,spark是一个stage一个stage执行的。先把任务分成stage,在任务提交阶段会把任务形成taskset,在执行任务。
spark的DAGScheduler根据RDD的ShuffleDependency来构建Stages:
- 例如:ShuffleRDD/CoGroupedRDD有一个ShuffleDependency。
- 很多操作通过钩子函数来创建ShuffleRDD
每个ShuffleDependency会map到spark的job的一个stage,然后会导致一个shuffle过程。
为什么shuffle过程代价很大
这是由于shuffle过程可能需要完成以下过程:
- 重新进行数据分区
- 数据传输
- 数据压缩
- 磁盘I/O
shuffle的体系结构
ShuffleManager接口
shuffleManager是spark的shuffle系统的可插拔接口。ShuffleManager将会在driver和每个executor上的SparkEnv中进行创建。可以通过参数spark.shuffle.manager进行设置。
driver通过ShuffleManager来注册shuffle,并且executor通过它来读取和写入数据。
ShuffleWriter
控制shuffle数据输出逻辑。
ShuffleReader
获取shuffle过程中用于ShuffleRDD的数据。
ShuffleBlockManager
管理抽象的bucket和计算数据块之间的mapping过程。
基于sort的shuffle
sort-based的shuffle,会把输入的记录根据目标分区id(partition ids)进行排序。然后写入单个的map输出文件中。为了读取map的输出部分,Reducers获取此文件的连续区域 。当map输出的数据太大而内存无法存放时,输出的排序子集可以保存到磁盘,这些磁盘文件被合并后,生成最终的输出文件。
sort shuffle有两个不同的输出路径来产生map的输出文件:
- 序列化排序(Serialized sorting)
在使用序列化排序时,需要满足以下3个条件:- shuffle不指定聚合(aggregation)或输出排序方法。
- shuffle的序列化程序支持序列化值的重定位(KryoSerializer和Spark SQL的自定义序列化程序目前支持此操作)。
- shuffle产生小于16777216个输出分区。
- 反序列化排序(Deserialized sorting)
用来处理所有其他情况。
Sort Shuffle Manager
Sort Shuffle Writer
- 每个map任务都会产生一个shuffle数据文件,和一个Index文件
- 通过外部排序类ExternalSorter对数据进行排序
- 若map-side需要进行合并(combine)操作,数据将会按key和分区进行排序,若没有合并操作数据只会根据分区进行排序。
Spark-2.0原理分析-shuffle过程的更多相关文章
- Spark之Task原理分析
在Spark中,一个应用程序要想被执行,肯定要经过以下的步骤: 从这个路线得知,最终一个job是依赖于分布在集群不同节点中的task,通过并行或者并发的运行来完成真正的工作.由此可见 ...
- 小记--------spark的worker原理分析及源码分析
- Struts1.2,struts2.0原理分析
struts1原理: 1.首先我们表单提交到action 2.进入到web.xml 3.web.xml拦截*.do 4.交给ActionServlet 5.找到path属性,获得url 6.找到nam ...
- 小记--------spark内核架构原理分析
首先会将jar包上传到机器(服务器上) 1.在这台机器上会产生一个Application(也就是自己的spark程序) 2.然后通过spark-submit(shell) 提交程序 ...
- 彻底搞懂spark的shuffle过程(shuffle write)
什么时候需要 shuffle writer 假如我们有个 spark job 依赖关系如下 我们抽象出来其中的rdd和依赖关系: E <-------n------, ...
- Spark Shuffle 过程
本文参考:http://www.cnblogs.com/cenyuhai/p/3826227.html 在数据流动的整个过程中,最复杂最影响性能的环节,就是 Shuffle 过程,本文将参考大神的博客 ...
- Hadoop计算中的Shuffle过程(转)
Hadoop计算中的Shuffle过程 作者:左坚 来源:清华万博 时间:2013-07-02 15:04:44.0 Shuffle过程是MapReduce的核心,也被称为奇迹发生的地方.要想理解Ma ...
- spark的shuffle和原理分析
概述 Shuffle就是对数据进行重组,由于分布式计算的特性和要求,在实现细节上更加繁琐和复杂. 在MapReduce框架,Shuffle是连接Map和Reduce之间的桥梁,Map阶段 ...
- Spark的RDD原理以及2.0特性的介绍
转载自:http://www.tuicool.com/articles/7VNfyif 王联辉,曾在腾讯,Intel 等公司从事大数据相关的工作.2013 年 - 2016 年先后负责腾讯 Yarn ...
随机推荐
- java框架---->mybatis的使用(一)
这里我们记录一些mybatis的一些常用知识和项目中遇到的问题总结.快乐人生的三个必要元素是,有要做的事.热爱的事及盼望的事. mybatis的一些知识 一.mybatis插入返回主键值 插入的jav ...
- 【Mybatis】Mybatis元素生命周期
一.SqlSessionFactoryBuilder SqlSessionFactoryBuilder是利用XML或者Java编码获得资源来构建SqlSessionFactory的,通过它可以构建多个 ...
- VC++生成不同的随机数
其用法是先调用srand函数,如 srand( (unsigned)time( NULL ) ) 这样可以使得每次产生的随机数序列不同.假如计算伪随机序列的初始数值(称为种子)相同,则计算出来的伪随机 ...
- Web Service Client使用Microsoft WSE 2.0
我安装了WSE 2.0 SP3,Setup Type选择Runtime.如果想要让Visual Studio 2005以上版本集成WSE需稍费周折,默认集成Visual Studio 2005. 1. ...
- JiraRemoteUserAuth
配置Jira7.x版本使用REMOTE_USER的HTTP Header方式登录: 前提是已经安装好了JIRA,并且前端使用apache或者nginx拦截对应的地址进行认证,认证之后访问对应的应用的时 ...
- VI 你不知道的事
1G 顶部 G 底部 ctrl+F 前进 ctrl+B 后退 /text 向前搜索 ?text 向后搜索 I i 插入字符串 a 光标后插入字符 A 跳到句末尾 wq 写入并退出 h k j l ...
- [SQL] SQL 日常检查脚本
--sqlserver 日常检查脚本 print '----------------------------' print ' 0.sqlserver all information ' print ...
- MAC SVN 基本设置 终端命令
extends:http://www.cnblogs.com/heiniuhaha/archive/2012/07/31/2616493.html 安装XCode后Mac OS X 系统已经内置了sv ...
- linux上jar包的运行
指定目录: #!/bin/bash source /etc/profile log() { echo `date +[%Y-%m-%d" "%H:%M:%S]` $1 } log ...
- parent.relativePath' points at wrong local POM
这个错误通常是下载了子项目,没有把父项目下载下来. 子项目要依赖父项目的pom The relative path of the parent pom.xml file within the chec ...