最近公共祖先 · Lowest Common Ancestor
[抄题]:
Given a binary tree, find the lowest common ancestor (LCA) of two given nodes in the tree.
“The lowest common ancestor is defined between two nodes v and w as the lowest node in T that has both v and w as descendants (where we allow a node to be a descendant of itself).”
_______3______
/ \
___5__ ___1__
/ \ / \
6 _2 0 8
/ \
7 4
For example, the lowest common ancestor (LCA) of nodes 5 and 1 is 3. Another example is LCA of nodes 5 and 4 is 5, since a node can be a descendant of itself according to the LCA definition.
[思维问题]:
不知道子节点怎么用dc。直接对给出的p,q节点进行操作即可。
[一句话思路]:
左右分开 谁不空返回谁
[输入量]:空: 正常情况:特大:特小:程序里处理到的特殊情况:异常情况(不合法不合理的输入):
[画图]:

[一刷]:
(left != null && right != null) 时,返回的是root节点的结果,不需要再做递归运算了。是一个“合”的过程。
[二刷]:
[三刷]:
[四刷]:
[五刷]:
[总结]:
[复杂度]:Time complexity: O(n) Space complexity: O(n)
[英文数据结构,为什么不用别的数据结构]:
只有dc算法,没有数据结构
[其他解法]:
自己写traverse函数:不好,会形成全局变量
[Follow Up]:
有parent指针的:用对齐的方法做
[LC给出的题目变变变]:
Lowest Common Ancestor of a Binary Search Tree 一模一样的,约束条件没用,直接套。
public class Solution {
/*
* @param root: The root of the binary search tree.
* @param A: A TreeNode in a Binary.
* @param B: A TreeNode in a Binary.
* @return: Return the least common ancestor(LCA) of the two nodes.
*/
public TreeNode lowestCommonAncestor(TreeNode root, TreeNode A, TreeNode B) {
if (root == null || A == root || B == root) {//
return root;
}
//divide
TreeNode left = lowestCommonAncestor(root.left, A, B);
TreeNode right = lowestCommonAncestor(root.right, A, B);
//conquer
if (left != null && right != null) {
return root;//
}
else if (left != null) {
return left;
}
else if (right != null) {
return right;
}
else {
return null;
}
}
}
最近公共祖先 · Lowest Common Ancestor的更多相关文章
- [Swift]LeetCode235. 二叉搜索树的最近公共祖先 | Lowest Common Ancestor of a Binary Search Tree
Given a binary search tree (BST), find the lowest common ancestor (LCA) of two given nodes in the BS ...
- [Swift]LeetCode236. 二叉树的最近公共祖先 | Lowest Common Ancestor of a Binary Tree
Given a binary tree, find the lowest common ancestor (LCA) of two given nodes in the tree. According ...
- 最近公共祖先 Lowest Common Ancestors
基于深度的LCA算法: 对于两个结点u.v,它们的深度分别为depth(u).depth(v),对于其公共祖先w,深度为depth(w),u需要向上回溯depth(u)-depth(w)步,v需要d ...
- [leetcode]236. Lowest Common Ancestor of a Binary Tree二叉树最近公共祖先
Given a binary tree, find the lowest common ancestor (LCA) of two given nodes in the tree. Accordi ...
- 235. Lowest Common Ancestor of a Binary Search Tree(LCA最低公共祖先)
Given a binary search tree (BST), find the lowest common ancestor (LCA) of two given nodes in the ...
- 236. Lowest Common Ancestor of a Binary Tree(最低公共祖先,难理解)
Given a binary tree, find the lowest common ancestor (LCA) of two given nodes in the tree. According ...
- LeetCode OJ:Lowest Common Ancestor of a Binary Tree(最近公共祖先)
Given a binary tree, find the lowest common ancestor (LCA) of two given nodes in the tree. According ...
- LeetCode OJ:Lowest Common Ancestor of a Binary Search Tree(最浅的公共祖先)
Given a binary search tree (BST), find the lowest common ancestor (LCA) of two given nodes in the BS ...
- Leetcode之深度优先搜索(DFS)专题-1123. 最深叶节点的最近公共祖先(Lowest Common Ancestor of Deepest Leaves)
Leetcode之深度优先搜索(DFS)专题-1123. 最深叶节点的最近公共祖先(Lowest Common Ancestor of Deepest Leaves) 深度优先搜索的解题详细介绍,点击 ...
随机推荐
- MySQL Binlog三种格式介绍及分析
Mysql binlog日志有三种格式,分别为Statement,MiXED,以及ROW! 1.Statement:每一条会修改数据的sql都会记录在binlog中. 优点:不需要记录每一行的变化,减 ...
- sping mvc+uploadify 上传文件大小控制3部曲
页面使用uploadify 上传控件,使用spring CommonsMultipartipartResolver , 反向代理nginx nginx 配置文件 client_max_body_siz ...
- Game of War - Fire Age 有何特别之处?
作者:福克斯007 链接:https://www.zhihu.com/question/21611550/answer/52458767来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转 ...
- 牛客网暑期ACM多校训练营(第七场)J题(Sudoku Subrectangles)题解
一.题意 给定一个高度为$n$,宽度为$m$的字母矩形(有大写和小写字母,共$52$种),问里面有多少个子矩形是“数独矩形”.数独矩形是指,该矩形内每一行内元素都不相同,每一列内元素也不相同. 二.思 ...
- div+Css绝对定位(absolute)和相对定位(relative)的总结
1.没有外Div的情况下 设置绝对定位(absolute)和相对定位(relative)是没有区别的 2.相对定位占位置 而绝对定位不占位置 会漂浮在别的Div之上 3.若父Div没有设置定位,子Di ...
- 解决“Can't bind to local 8630 for debugger”错误--查杀多余进程
Can't bind to local 8630 for debugger 表明本地8630端口被占用 1.Windows平台 在windows命令行窗口下执行: 1.查看所有的端口占用情况 C:\& ...
- How to Use vcpkg On Windows
Introduction If you do any sort of C++ development on Windows, then you know that library/package ma ...
- reduce|sum
reduce() 函数会对参数序列中元素进行累积. 函数将一个数据集合(链表,元组等)中的所有数据进行下列操作:用传给 reduce 中的函数 function(有两个参数)先对集合中的第 1.2 个 ...
- express有中间件的增删改查
var express = require('express');引入express框架 var router = express.Router();引入router路由级中间件 var data = ...
- Bogart gData.vb
Imports System Imports System.Data Imports System.Data.OleDb Imports Microsoft.VisualBasic Imports S ...