from sklearn.metrics import roc_curve
fpr, tpr, thresholds=roc_curve(y_train_5, y_scores)
fpr, tpr
>>>
(array([0.00000000e+00, 0.00000000e+00, 1.83220653e-05, ..., 9.94686601e-01, 9.94686601e-01, 1.00000000e+00]), array([1.84467810e-04, 1.43884892e-02, 1.43884892e-02, ..., 9.99815532e-01, 1.00000000e+00, 1.00000000e+00]))
 
def plot_roc_curve(fpr, tpr, label=None):
#绘制下图的红线,fpr和tpr是横纵坐标集合;color代表线的颜色;linestyle是线的形状(虚线,实线等);
plt.plot(fpr, tpr, color='r',linestyle='-', linewidth=2, label=label)
# 绘制途中黑线,"k"代表黑色,"--"代表是虚线,两个[0,1]意义和上一行的fpr,tpr一致,就是代表x点集合以及y点集合,这里其实就是指定了两个点(0, 0)以及(1, 1)
plt.plot([0,1], [0,1], 'k--')
plt.axis([0,1,0,1]) # x轴取值范围为0-1,y轴取值范围是0-1
plt.xlabel("False Positive Rate") #X轴显示标签
plt.ylabel("True Positive Rate") #Y轴显示标签
 
#fpr和tpr是代表横纵坐标的集合,每个fpr元素对应一个tpr元素,组成了上图这个2D线性图形;
plot_roc_curve(fpr, tpr)
plt.show()
 

sklearn的画图的更多相关文章

  1. 谁动了我的特征?——sklearn特征转换行为全记录

    目录 1 为什么要记录特征转换行为?2 有哪些特征转换的方式?3 特征转换的组合4 sklearn源码分析 4.1 一对一映射 4.2 一对多映射 4.3 多对多映射5 实践6 总结7 参考资料 1 ...

  2. 深入浅出KNN算法(二) sklearn KNN实践

    姊妹篇: 深入浅出KNN算法(一) 原理介绍 上次介绍了KNN的基本原理,以及KNN的几个窍门,这次就来用sklearn实践一下KNN算法. 一.Skelarn KNN参数概述 要使用sklearnK ...

  3. python3安装sklearn机器学习库

    安装sklearn需要的库请全部在万能仓库下载: http://www.lfd.uci.edu/~gohlke/pythonlibs/#scipy http://www.lfd.uci.edu/~go ...

  4. Matplotlib学习---用matplotlib和sklearn画拟合线(line of best fit)

    在机器学习中,经常要用scikit-learn里面的线性回归模型来对数据进行拟合,进而找到数据的规律,从而达到预测的目的.用图像展示数据及其拟合线可以非常直观地看出拟合线与数据的匹配程度,同时也可用于 ...

  5. 使用sklearn机器学习库实现线性回归

    import numpy as np  # 导入科学技术框架import matplotlib.pyplot as plt  # 导入画图工具from sklearn.linear_model imp ...

  6. python时间序列画图plot总结

    画图从直觉上来讲就是为了更加清晰的展示时序数据所呈现的规律(包括趋势,随时间变化的规律(一周.一个月.一年等等)和周期性规律),对于进一步选择时序分析模型至关重要.下面主要是基于pandas库总结一下 ...

  7. Sklearn实现逻辑回归

    方法与参数 LogisticRegression类的各项参数的含义 class sklearn.linear_model.LogisticRegression(penalty='l2', dual=F ...

  8. 调用sklearn包中的PLA算法[转载]

    转自:https://blog.csdn.net/u010626937/article/details/72896144#commentBox 1.Python的机器学习包sklearn中也包含了感知 ...

  9. 机器学习入门-线性判别分析(LDA)1.LabelEncoder(进行标签的数字映射) 2.LinearDiscriminantAnalysis (sklearn的LDA模块)

    1.from sklearn.processing import LabelEncoder 进行标签的代码编译 首先需要通过model.fit 进行预编译,然后使用transform进行实际编译 2. ...

随机推荐

  1. Oracle to_char()和to_date()函数的用法

    to_char()函数是我们经常使用的函数,下面就为您详细介绍Oracle to_date()函数的用法 1.to_char()函数分析 1)SQL中不区分大小写,MM和mm被认为是相同的格式代码 先 ...

  2. 快速切题 acdream手速赛(6)A-C

    Sudoku Checker Time Limit: 2000/1000MS (Java/Others)Memory Limit: 128000/64000KB (Java/Others) Submi ...

  3. 跟我一起学习ASP.NET 4.5 MVC4.0(二)

    上一篇文章中(跟我一起学习ASP.NET 4.5 MVC4.0(一))我们基础的了解了一下ASP.NET MVC4.0的一些比较简单的改变,主要是想对于MVC3.0来说的.因为这一些列主要是要给ASP ...

  4. 使用word2013写博客

    额额  要使用的话首先要配置一下: 选择word2013的创建,然后点击模版,搜索博客. 然后就是创建账户了,账户主要填写的下面这些信息: 注意,cnblogs后面的子域名应该使用你自己的子域名 下面 ...

  5. linux定时任务:crontab命令

    crontab命令被用来提交和管理用户的需要周期性执行的任务,与windows下的计划任务类似,当安装完成操作系统后,默认会安装此服务工具,并且会自动启动crond进程,crond进程每分钟会定期检查 ...

  6. 用UILabel实现文字滚动播放(跑马灯)效果

    - (void)viewDidLoad { [super viewDidLoad]; //数据源 self.messageArray = [NSArray arrayWithObjects: &quo ...

  7. SWIFT中用Switch case 类类型

    有时觉得SWIFT的语法真的强大而又变态,不说了,直接上代码瞅瞅: 首先先定义一个交通工具的父类 class Vehicle{ var wheels:Int! var speed:Double! in ...

  8. UI基础:UITableView表视图

    表视图 UITableView,iOS中最重要的视图,随处可见. 表视图通常用来管理一组具有相同数据结构的数据. UITableView继承于UIScrollView,所以可以滚动 表视图的每条数据都 ...

  9. Use JAWS 14 in a VM

    We were not able to run the JAWS 14 app in a Virtual Machine after the installation is completed, th ...

  10. SIM800C 使用基站定位

    /******************************************************************************* * SIM800C 使用基站定位 * ...