1. EM算法-数学基础

2. EM算法-原理详解

3. EM算法-高斯混合模型GMM

4. EM算法-高斯混合模型GMM详细代码实现

5. EM算法-高斯混合模型GMM+Lasso

1. 前言

GMM(Gaussian mixture model) 混合高斯模型在机器学习、计算机视觉等领域有着广泛的应用。其典型的应用有概率密度估计、背景建模、聚类等。

2. GMM介绍

高斯混合模型(Gaussian Mixed Model)指的是多个高斯分布函数的线性组合,理论上GMM可以拟合出任意类型的分布,通常用于解决同一集合下的数据包含多个不同的分布的情况。

3. GMM原理解析

根据我们之前EM算法-原理详解,我们已经学习了EM算法的一般形式:
\[
Q_i(z^{(i)}) = P( z^{(i)}|x^{(i)},\theta^{j})\;\;\;\;(1)
\]
\[
\sum\limits_{z}Q_i(z^{(i)}) =1
\]
\[
L(\theta, \theta^{j}) = \sum\limits_{i=1}^m\sum\limits_{z^{(i)}}Q_i(z^{(i)})log{P(x^{(i)},z^{(i)}|\theta)}
\]
现在我们用高斯分布来一步一步的完成EM算法。

设有随机变量\(\boldsymbol{X}\),则混合高斯模型可以用下式表示:
\[
p(\boldsymbol{x}|\boldsymbol{\pi},\boldsymbol{\mu},\boldsymbol{\Sigma})=\sum_{k=1}^K\pi_k\mathcal{N}(\boldsymbol{x}|\boldsymbol{\mu}_k,\boldsymbol{\Sigma}_k)
\]

\[
\sum_{k=1}^K\pi_k=1
\]

\[
0<\pi_k<1
\]

其中\(\mathcal{N}(\boldsymbol{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)\)称为混合模型中的第\(k\)个分量(component)。可以看到\(\pi_k\)相当于每个分量\(\mathcal{N}(\boldsymbol{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)\)的权重

3.1 引入隐变量

我们引入一个隐变量\(z_{ik}\),\(z_{ik}\)的含义是样本\(x_i\)来自第\(k\)个模型的数据分布。
\[
z_{ik}=
\left \{\begin{array}{cc}
1, & if\ data\ item\ i\ comes\ from\ component\ k\\
0, & otherwises
\end{array}\right.
\]
则有

\[
P(x,z|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) = \prod_{k=1}^K\prod_{i=1}^N[\pi_k\mathcal{N}(\boldsymbol{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)]^{z_{ik}}=\prod_{k=1}^K\pi_k^{n_k}\prod_{i=1}^N[\mathcal{N}(\boldsymbol{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)]^{z_{ik}}\;\;\;\;(2)
\]
其中\(n_k=\sum\limits_{i=1}^Nz_{ik}\),\(\sum\limits_{k=1}^Kn_k=N\)

再对(2)进一步化简得到:

\[
P(x,z|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)=\prod_{k=1}^K\pi_k^{n_k}\prod_{i=1}^N[\frac{1}{\sqrt{2\pi}\boldsymbol{\Sigma_k}}exp(-\frac{{(x_i-\boldsymbol{\mu}_k})^2}{2\boldsymbol{\Sigma}_k})]^{z_{ik}}
\]
取对数log后:

\[
logP(x,z|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)=\sum_{k=1}^Kn_klog\pi_k+\sum_{i=1}^Nz_{ik}[log(\frac{1}{\sqrt{2\pi}})-log(\boldsymbol{\Sigma_k})-\frac{{(x_i-\boldsymbol{\mu}_k})^2}{2\boldsymbol{\Sigma}_k}]
\]

3.2 确定E步极大似然函数

计算最大似然估计\(L(\theta,\theta^{(j)})\),\(j\)是第\(j\)次EM的过程,下式子中的\(E_Q\)是(1)中\(Q\)函数的期望值

\[
L(\theta,\theta^{(j)})=E_Q[logP(x,z|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)]
\]
\[
L(\theta,\theta^{(j)})=E_Q[\sum_{k=1}^Kn_klog\pi_k+\sum_{i=1}^Nz_{ik}[\frac{D}{2}log(2\pi)-\frac{1}{2}log(\boldsymbol{\Sigma_k})-\frac{{(x_i-\boldsymbol{\mu}_k})^2}{2\boldsymbol{\Sigma}_k}]]
\]
\[
L(\theta,\theta^{(j)})=\sum_{k=1}^K[\sum_{i=1}^N(E_Q(z_{ik}))log\pi_k+\sum_{i=1}^NE_Q(z_{ik})[\frac{D}{2}log(2\pi)-\frac{1}{2}log(\boldsymbol{\Sigma_k})-\frac{{(x_i-\boldsymbol{\mu}_k})^2}{2\boldsymbol{\Sigma}_k}]]
\]
我们记\(\gamma_{ik}=E_Q(z_{ik})\),\(n_k=\sum\limits_{i=1}^N\gamma_{ik}\)可以算出
\[
L(\theta,\theta^{(j)})=\sum_{k=1}^Kn_k[log\pi_k+(\frac{D}{2}log(2\pi)-\frac{1}{2}(log(\boldsymbol{\Sigma_k})-\frac{{(x_i-\boldsymbol{\mu}_k})^2}{2\boldsymbol{\Sigma}_k})]
\]
因为\(\frac{D}{2}log(2\pi)\)是常数,忽略不计
\[
L(\theta,\theta^{(j)})=\sum_{k=1}^Kn_k[log\pi_k-\frac{1}{2}(log(\boldsymbol{\Sigma_k})+\frac{{(x_i-\boldsymbol{\mu}_k})^2}{\boldsymbol{\Sigma}_k})]
\]
\[
\gamma_{ik}=\frac{\pi_k\mathcal{N}(\boldsymbol{x}|\boldsymbol{\mu}_k,\boldsymbol{\Sigma}_k)}{\sum_{k=1}^K\pi_k\mathcal{N}(\boldsymbol{x}|\boldsymbol{\mu}_k,\boldsymbol{\Sigma}_k)}
\]

3.3 确定M步,更新参数

M步的过程是最化大\(L(\theta, \theta^{j})\),求出\(\theta^{(j+1)}\)
\[
\theta^{j+1} = arg \max \limits_{\theta}L(\theta, \theta^{j})
\]
因为有
\[
n_k=\sum_{i=1}^N\gamma_{ik}
\]

通过\(L(\theta, \theta^{j})\)对\(\mu_k\),\(\Sigma_k\)求偏倒等于0得到

\[
\mu_k=\frac{1}{n_k}\sum_{i=1}^N\gamma_{ik}x_i
\]
\[
\Sigma_k=\frac{1}{n_k}\sum_{i=1}^N\gamma_{ik}(x_i-\mu_k)^2
\]

\[
\pi_k=\frac{n_k}{N}
\]

4. GMM算法流程

输入:观测数据\(x_1,x_2,x_3,...,x_N\)

输出:GMM的参数

  1. 初始化参数
  2. E步:根据当前模型,计算模型\(k\)对\(x_i\)的影响
    \[
    \gamma_{ik}=\frac{\pi_k\mathcal{N}(\boldsymbol{x}|\boldsymbol{\mu}_k,\boldsymbol{\Sigma}_k)}{\sum_{k=1}^K\pi_k\mathcal{N}(\boldsymbol{x}|\boldsymbol{\mu}_k,\boldsymbol{\Sigma}_k)}
    \]
  3. M步:计算\(\mu_{k+1},\Sigma_{k+1}^2,\pi_{k+1}\)。
    \[
    n_k=\sum_{i=1}^N\gamma_{ik}
    \]
    \[
    \mu_{k+1}=\frac{1}{n_k}\sum_{i=1}^N\gamma_{ik}x_i
    \]
    \[
    \Sigma_{k+1}^2=\frac{1}{n_k}\sum_{i=1}^N\gamma_{ik}(x_i-\mu_k)^2
    \]

\[
\pi_{k+1}=\frac{n_k}{N}
\]

  1. 重复2,3两步直到收敛

3. EM算法-高斯混合模型GMM的更多相关文章

  1. 6. EM算法-高斯混合模型GMM+Lasso详细代码实现

    1. 前言 我们之前有介绍过4. EM算法-高斯混合模型GMM详细代码实现,在那片博文里面把GMM说涉及到的过程,可能会遇到的问题,基本讲了.今天我们升级下,主要一起解析下EM算法中GMM(搞事混合模 ...

  2. 5. EM算法-高斯混合模型GMM+Lasso

    1. EM算法-数学基础 2. EM算法-原理详解 3. EM算法-高斯混合模型GMM 4. EM算法-GMM代码实现 5. EM算法-高斯混合模型+Lasso 1. 前言 前面几篇博文对EM算法和G ...

  3. 4. EM算法-高斯混合模型GMM详细代码实现

    1. EM算法-数学基础 2. EM算法-原理详解 3. EM算法-高斯混合模型GMM 4. EM算法-高斯混合模型GMM详细代码实现 5. EM算法-高斯混合模型GMM+Lasso 1. 前言 EM ...

  4. EM算法和高斯混合模型GMM介绍

    EM算法 EM算法主要用于求概率密度函数参数的最大似然估计,将问题$\arg \max _{\theta_{1}} \sum_{i=1}^{n} \ln p\left(x_{i} | \theta_{ ...

  5. 高斯混合模型GMM与EM算法的Python实现

    GMM与EM算法的Python实现 高斯混合模型(GMM)是一种常用的聚类模型,通常我们利用最大期望算法(EM)对高斯混合模型中的参数进行估计. 1. 高斯混合模型(Gaussian Mixture ...

  6. 贝叶斯来理解高斯混合模型GMM

    最近学习基础算法<统计学习方法>,看到利用EM算法估计高斯混合模型(GMM)的时候,发现利用贝叶斯的来理解高斯混合模型的应用其实非常合适. 首先,假设对于贝叶斯比较熟悉,对高斯分布也熟悉. ...

  7. 高斯混合模型 GMM

    本文将涉及到用 EM 算法来求解 GMM 模型,文中会涉及几个统计学的概念,这里先罗列出来: 方差:用来描述数据的离散或波动程度. \[var(X) =  \frac{\sum_{i=1}^N( X_ ...

  8. Spark2.0机器学习系列之10: 聚类(高斯混合模型 GMM)

    在Spark2.0版本中(不是基于RDD API的MLlib),共有四种聚类方法:      (1)K-means      (2)Latent Dirichlet allocation (LDA)  ...

  9. 2. EM算法-原理详解

    1. EM算法-数学基础 2. EM算法-原理详解 3. EM算法-高斯混合模型GMM 4. EM算法-高斯混合模型GMM详细代码实现 5. EM算法-高斯混合模型GMM+Lasso 1. 前言 概率 ...

随机推荐

  1. Using Repository Pattern in Entity Framework

    One of the most common pattern is followed in the world of Entity Framework is “Repository Pattern”. ...

  2. 编码 GBK 的不可映射字符

    一般做项目公司都会统一要求文件编码类型,很多为了实现应用国际化和本地化和更高的性能,而选用UTF-8而非GBK. 但在开发过程中我们都用的是IDE,只要更改了配置就不用操心了,但有时我们也会用命令行来 ...

  3. Sublime text —— 自定义主题Soda

    编辑器的主题有两种,一种是语法高亮颜色主题,一种是编辑器自身显示主题,如果要自定义编辑器样式,个人推荐soda. Ctrl+Shift+p 输入install,接着输入  soda,选择  Theme ...

  4. pascalVOC 标注文件,解析为TXT

    首先,读取所有xml文件完整路径,写入train.txt 文本文档中, 然后读取TXT文档,逐行读取xml文档,建文件夹,用于保存解析好的TXT,写入TXT时,只需要保存类别名和坐标信息即可,中间用T ...

  5. YMP运行初始化步骤

    , Version.VersionType.Release); private static final Log _LOG = LogFactory.getLog(YMP.class); privat ...

  6. C#基础第六天-作业-利用面向对象的思想去实现名片

    1.利用面向对象的思想去实现: (增加,修改,删除,查询,查询全部)需求:根据人名去(删除/查询).指定列:姓名,年龄,性别,爱好,电话. 本系列教程: C#基础总结之八面向对象知识点总结-继承与多态 ...

  7. 解决Myeclipse中导入自定义的配色方案后,JSP中的js代码块为白色背景的问题

    捣鼓了大半个上午,终于搞定.这样设置就可以了: 点击MyEclipse上方的菜单栏中的window菜单.选择Preferences菜单项.在弹出的窗口的左侧树形菜单依次选择:MyEclipse.Fil ...

  8. Nginx(六):Nginx HTTP负载均衡和反向代理的配置与优化

    一.什么是负载均衡和反向代理 随着网站访问量的快速增长,单台服务器已经无法承担大量用户的并发访问,必须釆用多台服务器协同工作,以提高计算机系统的处理能力和计算强度,满足当前业务量的需求.而如何在完成同 ...

  9. XMPP 安装ejabberd 搭建服务器环境

    网上各种找..各种安装失败.. 终于.... ejabberd 下载列表.... http://www.process-one.net/en/ejabberd/archive/  建议下载old 版本 ...

  10. 怎样使用 Apache ab 以及 OneAPM 进行压力測试?

    下一个 release 准备小长假后就要 go-live .全部的測试 case 都 cover 过了.但还未进行过压力測试,有点不放心,刚好过节期间家人都回家去了,假期最终能够抽点时间压測一把. A ...