3. EM算法-高斯混合模型GMM
1. EM算法-数学基础
2. EM算法-原理详解
3. EM算法-高斯混合模型GMM
4. EM算法-高斯混合模型GMM详细代码实现
5. EM算法-高斯混合模型GMM+Lasso
1. 前言
GMM(Gaussian mixture model) 混合高斯模型在机器学习、计算机视觉等领域有着广泛的应用。其典型的应用有概率密度估计、背景建模、聚类等。
2. GMM介绍
高斯混合模型(Gaussian Mixed Model)指的是多个高斯分布函数的线性组合,理论上GMM可以拟合出任意类型的分布,通常用于解决同一集合下的数据包含多个不同的分布的情况。
3. GMM原理解析
根据我们之前EM算法-原理详解,我们已经学习了EM算法的一般形式:
\[
Q_i(z^{(i)}) = P( z^{(i)}|x^{(i)},\theta^{j})\;\;\;\;(1)
\]
\[
\sum\limits_{z}Q_i(z^{(i)}) =1
\]
\[
L(\theta, \theta^{j}) = \sum\limits_{i=1}^m\sum\limits_{z^{(i)}}Q_i(z^{(i)})log{P(x^{(i)},z^{(i)}|\theta)}
\]
现在我们用高斯分布来一步一步的完成EM算法。
设有随机变量\(\boldsymbol{X}\),则混合高斯模型可以用下式表示:
\[
p(\boldsymbol{x}|\boldsymbol{\pi},\boldsymbol{\mu},\boldsymbol{\Sigma})=\sum_{k=1}^K\pi_k\mathcal{N}(\boldsymbol{x}|\boldsymbol{\mu}_k,\boldsymbol{\Sigma}_k)
\]
\[
\sum_{k=1}^K\pi_k=1
\]
\[
0<\pi_k<1
\]
其中\(\mathcal{N}(\boldsymbol{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)\)称为混合模型中的第\(k\)个分量(component)。可以看到\(\pi_k\)相当于每个分量\(\mathcal{N}(\boldsymbol{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)\)的权重
3.1 引入隐变量
我们引入一个隐变量\(z_{ik}\),\(z_{ik}\)的含义是样本\(x_i\)来自第\(k\)个模型的数据分布。
\[
z_{ik}=
\left \{\begin{array}{cc}
1, & if\ data\ item\ i\ comes\ from\ component\ k\\
0, & otherwises
\end{array}\right.
\]
则有
\[
P(x,z|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) = \prod_{k=1}^K\prod_{i=1}^N[\pi_k\mathcal{N}(\boldsymbol{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)]^{z_{ik}}=\prod_{k=1}^K\pi_k^{n_k}\prod_{i=1}^N[\mathcal{N}(\boldsymbol{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)]^{z_{ik}}\;\;\;\;(2)
\]
其中\(n_k=\sum\limits_{i=1}^Nz_{ik}\),\(\sum\limits_{k=1}^Kn_k=N\)
再对(2)进一步化简得到:
\[
P(x,z|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)=\prod_{k=1}^K\pi_k^{n_k}\prod_{i=1}^N[\frac{1}{\sqrt{2\pi}\boldsymbol{\Sigma_k}}exp(-\frac{{(x_i-\boldsymbol{\mu}_k})^2}{2\boldsymbol{\Sigma}_k})]^{z_{ik}}
\]
取对数log后:
\[
logP(x,z|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)=\sum_{k=1}^Kn_klog\pi_k+\sum_{i=1}^Nz_{ik}[log(\frac{1}{\sqrt{2\pi}})-log(\boldsymbol{\Sigma_k})-\frac{{(x_i-\boldsymbol{\mu}_k})^2}{2\boldsymbol{\Sigma}_k}]
\]
3.2 确定E步极大似然函数
计算最大似然估计\(L(\theta,\theta^{(j)})\),\(j\)是第\(j\)次EM的过程,下式子中的\(E_Q\)是(1)中\(Q\)函数的期望值
\[
L(\theta,\theta^{(j)})=E_Q[logP(x,z|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)]
\]
\[
L(\theta,\theta^{(j)})=E_Q[\sum_{k=1}^Kn_klog\pi_k+\sum_{i=1}^Nz_{ik}[\frac{D}{2}log(2\pi)-\frac{1}{2}log(\boldsymbol{\Sigma_k})-\frac{{(x_i-\boldsymbol{\mu}_k})^2}{2\boldsymbol{\Sigma}_k}]]
\]
\[
L(\theta,\theta^{(j)})=\sum_{k=1}^K[\sum_{i=1}^N(E_Q(z_{ik}))log\pi_k+\sum_{i=1}^NE_Q(z_{ik})[\frac{D}{2}log(2\pi)-\frac{1}{2}log(\boldsymbol{\Sigma_k})-\frac{{(x_i-\boldsymbol{\mu}_k})^2}{2\boldsymbol{\Sigma}_k}]]
\]
我们记\(\gamma_{ik}=E_Q(z_{ik})\),\(n_k=\sum\limits_{i=1}^N\gamma_{ik}\)可以算出
\[
L(\theta,\theta^{(j)})=\sum_{k=1}^Kn_k[log\pi_k+(\frac{D}{2}log(2\pi)-\frac{1}{2}(log(\boldsymbol{\Sigma_k})-\frac{{(x_i-\boldsymbol{\mu}_k})^2}{2\boldsymbol{\Sigma}_k})]
\]
因为\(\frac{D}{2}log(2\pi)\)是常数,忽略不计
\[
L(\theta,\theta^{(j)})=\sum_{k=1}^Kn_k[log\pi_k-\frac{1}{2}(log(\boldsymbol{\Sigma_k})+\frac{{(x_i-\boldsymbol{\mu}_k})^2}{\boldsymbol{\Sigma}_k})]
\]
\[
\gamma_{ik}=\frac{\pi_k\mathcal{N}(\boldsymbol{x}|\boldsymbol{\mu}_k,\boldsymbol{\Sigma}_k)}{\sum_{k=1}^K\pi_k\mathcal{N}(\boldsymbol{x}|\boldsymbol{\mu}_k,\boldsymbol{\Sigma}_k)}
\]
3.3 确定M步,更新参数
M步的过程是最化大\(L(\theta, \theta^{j})\),求出\(\theta^{(j+1)}\)
\[
\theta^{j+1} = arg \max \limits_{\theta}L(\theta, \theta^{j})
\]
因为有
\[
n_k=\sum_{i=1}^N\gamma_{ik}
\]
通过\(L(\theta, \theta^{j})\)对\(\mu_k\),\(\Sigma_k\)求偏倒等于0得到
\[
\mu_k=\frac{1}{n_k}\sum_{i=1}^N\gamma_{ik}x_i
\]
\[
\Sigma_k=\frac{1}{n_k}\sum_{i=1}^N\gamma_{ik}(x_i-\mu_k)^2
\]
\[
\pi_k=\frac{n_k}{N}
\]
4. GMM算法流程
输入:观测数据\(x_1,x_2,x_3,...,x_N\)
输出:GMM的参数
- 初始化参数
- E步:根据当前模型,计算模型\(k\)对\(x_i\)的影响
\[
\gamma_{ik}=\frac{\pi_k\mathcal{N}(\boldsymbol{x}|\boldsymbol{\mu}_k,\boldsymbol{\Sigma}_k)}{\sum_{k=1}^K\pi_k\mathcal{N}(\boldsymbol{x}|\boldsymbol{\mu}_k,\boldsymbol{\Sigma}_k)}
\] - M步:计算\(\mu_{k+1},\Sigma_{k+1}^2,\pi_{k+1}\)。
\[
n_k=\sum_{i=1}^N\gamma_{ik}
\]
\[
\mu_{k+1}=\frac{1}{n_k}\sum_{i=1}^N\gamma_{ik}x_i
\]
\[
\Sigma_{k+1}^2=\frac{1}{n_k}\sum_{i=1}^N\gamma_{ik}(x_i-\mu_k)^2
\]
\[
\pi_{k+1}=\frac{n_k}{N}
\]
- 重复2,3两步直到收敛
3. EM算法-高斯混合模型GMM的更多相关文章
- 6. EM算法-高斯混合模型GMM+Lasso详细代码实现
1. 前言 我们之前有介绍过4. EM算法-高斯混合模型GMM详细代码实现,在那片博文里面把GMM说涉及到的过程,可能会遇到的问题,基本讲了.今天我们升级下,主要一起解析下EM算法中GMM(搞事混合模 ...
- 5. EM算法-高斯混合模型GMM+Lasso
1. EM算法-数学基础 2. EM算法-原理详解 3. EM算法-高斯混合模型GMM 4. EM算法-GMM代码实现 5. EM算法-高斯混合模型+Lasso 1. 前言 前面几篇博文对EM算法和G ...
- 4. EM算法-高斯混合模型GMM详细代码实现
1. EM算法-数学基础 2. EM算法-原理详解 3. EM算法-高斯混合模型GMM 4. EM算法-高斯混合模型GMM详细代码实现 5. EM算法-高斯混合模型GMM+Lasso 1. 前言 EM ...
- EM算法和高斯混合模型GMM介绍
EM算法 EM算法主要用于求概率密度函数参数的最大似然估计,将问题$\arg \max _{\theta_{1}} \sum_{i=1}^{n} \ln p\left(x_{i} | \theta_{ ...
- 高斯混合模型GMM与EM算法的Python实现
GMM与EM算法的Python实现 高斯混合模型(GMM)是一种常用的聚类模型,通常我们利用最大期望算法(EM)对高斯混合模型中的参数进行估计. 1. 高斯混合模型(Gaussian Mixture ...
- 贝叶斯来理解高斯混合模型GMM
最近学习基础算法<统计学习方法>,看到利用EM算法估计高斯混合模型(GMM)的时候,发现利用贝叶斯的来理解高斯混合模型的应用其实非常合适. 首先,假设对于贝叶斯比较熟悉,对高斯分布也熟悉. ...
- 高斯混合模型 GMM
本文将涉及到用 EM 算法来求解 GMM 模型,文中会涉及几个统计学的概念,这里先罗列出来: 方差:用来描述数据的离散或波动程度. \[var(X) = \frac{\sum_{i=1}^N( X_ ...
- Spark2.0机器学习系列之10: 聚类(高斯混合模型 GMM)
在Spark2.0版本中(不是基于RDD API的MLlib),共有四种聚类方法: (1)K-means (2)Latent Dirichlet allocation (LDA) ...
- 2. EM算法-原理详解
1. EM算法-数学基础 2. EM算法-原理详解 3. EM算法-高斯混合模型GMM 4. EM算法-高斯混合模型GMM详细代码实现 5. EM算法-高斯混合模型GMM+Lasso 1. 前言 概率 ...
随机推荐
- Using Repository Pattern in Entity Framework
One of the most common pattern is followed in the world of Entity Framework is “Repository Pattern”. ...
- 编码 GBK 的不可映射字符
一般做项目公司都会统一要求文件编码类型,很多为了实现应用国际化和本地化和更高的性能,而选用UTF-8而非GBK. 但在开发过程中我们都用的是IDE,只要更改了配置就不用操心了,但有时我们也会用命令行来 ...
- Sublime text —— 自定义主题Soda
编辑器的主题有两种,一种是语法高亮颜色主题,一种是编辑器自身显示主题,如果要自定义编辑器样式,个人推荐soda. Ctrl+Shift+p 输入install,接着输入 soda,选择 Theme ...
- pascalVOC 标注文件,解析为TXT
首先,读取所有xml文件完整路径,写入train.txt 文本文档中, 然后读取TXT文档,逐行读取xml文档,建文件夹,用于保存解析好的TXT,写入TXT时,只需要保存类别名和坐标信息即可,中间用T ...
- YMP运行初始化步骤
, Version.VersionType.Release); private static final Log _LOG = LogFactory.getLog(YMP.class); privat ...
- C#基础第六天-作业-利用面向对象的思想去实现名片
1.利用面向对象的思想去实现: (增加,修改,删除,查询,查询全部)需求:根据人名去(删除/查询).指定列:姓名,年龄,性别,爱好,电话. 本系列教程: C#基础总结之八面向对象知识点总结-继承与多态 ...
- 解决Myeclipse中导入自定义的配色方案后,JSP中的js代码块为白色背景的问题
捣鼓了大半个上午,终于搞定.这样设置就可以了: 点击MyEclipse上方的菜单栏中的window菜单.选择Preferences菜单项.在弹出的窗口的左侧树形菜单依次选择:MyEclipse.Fil ...
- Nginx(六):Nginx HTTP负载均衡和反向代理的配置与优化
一.什么是负载均衡和反向代理 随着网站访问量的快速增长,单台服务器已经无法承担大量用户的并发访问,必须釆用多台服务器协同工作,以提高计算机系统的处理能力和计算强度,满足当前业务量的需求.而如何在完成同 ...
- XMPP 安装ejabberd 搭建服务器环境
网上各种找..各种安装失败.. 终于.... ejabberd 下载列表.... http://www.process-one.net/en/ejabberd/archive/ 建议下载old 版本 ...
- 怎样使用 Apache ab 以及 OneAPM 进行压力測试?
下一个 release 准备小长假后就要 go-live .全部的測试 case 都 cover 过了.但还未进行过压力測试,有点不放心,刚好过节期间家人都回家去了,假期最终能够抽点时间压測一把. A ...