#include <iostream>
#include <opencv2/opencv.hpp>

using namespace std;
using namespace cv;

Mat img1, img2, img3, img4, img_result, img_gray1, img_gray2, img_gray3, img_canny1;

char win1[] = "window1";
char win2[] = "window2";
char win3[] = "window3";
char win4[] = "window4";
char win5[] = "window5";

int thread_value = 100;
int max_value = 255;
RNG rng1(12345);

int Demo_Convex_Hull();
void Demo_1(int, void*);

//发现凸包
int Demo_Convex_Hull()
{
  namedWindow(win1, CV_WINDOW_AUTOSIZE);
  namedWindow(win2, CV_WINDOW_AUTOSIZE);
  //namedWindow(win3, CV_WINDOW_AUTOSIZE);

  img1 = imread("D://images//1//temp2.jpg");
  //img2 = imread("D://images//1//p5_1.jpg");
  if (img1.empty())
  {
    cout << "could not load image..." << endl;
    return 0;
  }

  imshow(win1, img1);
  img4 = Mat::zeros(img1.size(),CV_8UC3);

  //转灰度图
  cvtColor(img1, img_gray1, CV_BGR2GRAY);
  //模糊处理
  blur(img_gray1, img2, Size(3, 3), Point(-1, -1),BORDER_DEFAULT);

  createTrackbar("track", win1, &thread_value, max_value, Demo_1);
  Demo_1(0,0);

  return 0;
}

void Demo_1(int,void*)
{
  vector<vector<Point>> vec_p;
  vector<Vec4i> vec_4i;

  threshold(img2, img3, thread_value, max_value, THRESH_BINARY);
  findContours(img3, vec_p, vec_4i, RETR_TREE, CHAIN_APPROX_SIMPLE, Point(0, 0));

  vector<vector<Point>> convexs(vec_p.size());
  for (size_t i=0;i<vec_p.size();i++)
  {
    convexHull(vec_p[i], convexs[i], false, true);
  }

  for (size_t j=0;j<vec_p.size();j++)
  {
    Scalar color_1 = Scalar(rng1.uniform(0,255), rng1.uniform(0, 255), rng1.uniform(0, 255));
    drawContours(img4, vec_p, j, color_1, 2, LINE_8, vec_4i, 0, Point(0, 0));
    drawContours(img4, convexs, j, color_1, 2, LINE_8, vec_4i, 0, Point(0, 0));
  }
  imshow(win2,img4);
}

int main()
{
  Demo_Convex_Hull();

  waitKey(0);
  return 0;
}

Opencv Convex Hull (凸包)的更多相关文章

  1. [GYM 100492A] Average Convex Hull 凸包好题

    大致题意: 给出一个点集,其中有一个点有相同的几率会被删除,求删除之后的点集够成的凸包上的点的平均数. 首先看到题目,可以考虑枚举删除的点,将其凸包上前后两点以及两点间凸包内所有点构建凸包,因为凸包内 ...

  2. 2.2 convex hull凸包

    1.定义:一组平面上的点,求一个包含所有点的最小的凸多边形,就是凸包问题. 利用编程解决凸包问题,应该得到一组逆时针的顶点的顺序集合,在边上但不是顶点,则不包含在集合里. 2.机械的方法:将点所在的位 ...

  3. P6810 「MCOI-02」Convex Hull 凸包

    Link 一句话题意: 求出 \(\displaystyle\sum_{i=1}^{n}\sum_{j=1}^{m}\tau(i)\tau(j)\tau(gcd(i,j))\) 前置知识 \(diri ...

  4. 【题解】「MCOI-02」Convex Hull 凸包

    题目戳我 \(\text{Solution:}\) \[\sum_{i=1}^n \sum_{j=1}^n \rho(i)\rho(j)\rho(\gcd(i,j)) \] \[=\sum_{d=1} ...

  5. OpenCV入门之寻找图像的凸包(convex hull)

    介绍   凸包(Convex Hull)是一个计算几何(图形学)中的概念,它的严格的数学定义为:在一个向量空间V中,对于给定集合X,所有包含X的凸集的交集S被称为X的凸包.   在图像处理过程中,我们 ...

  6. opencv::凸包-Convex Hull

    概念介绍 什么是凸包(Convex Hull),在一个多变形边缘或者内部任意两个点的连线都包含在多边形边界或者内部. 正式定义:包含点集合S中所有点的最小凸多边形称为凸包 Graham扫描算法 首先选 ...

  7. 凸包(Convex Hull)构造算法——Graham扫描法

    凸包(Convex Hull) 在图形学中,凸包是一个非常重要的概念.简明的说,在平面中给出N个点,找出一个由其中某些点作为顶点组成的凸多边形,恰好能围住所有的N个点. 这十分像是在一块木板上钉了N个 ...

  8. Monotone Chain Convex Hull(单调链凸包)

    Monotone Chain Convex Hull(单调链凸包)算法伪代码: //输入:一个在平面上的点集P //点集 P 按 先x后y 的递增排序 //m 表示共a[i=0...m]个点,ans为 ...

  9. OpenCV学习(29) 凸包(convexhull)

    在opencv中,通过函数convexHulll能很容易的得到一系列点的凸包,比如由点组成的轮廓,通过convexHull函数,我们就能得到轮廓的凸包.下面的图就是一些点集的凸包. 求凸包的代码如下: ...

随机推荐

  1. angular先加载页面再执行事件,使用echarts渲染页面

    剧情重现: 在一个页面中有多个小模块,这几个模块是可以拖动调顺序的,并且其中有两个模块使用了echarts渲染, 调整顺序angular插件有成熟的解决方案angular-sortable,https ...

  2. 如何在 Linux 上使用 x2go 设置远程桌面

    https://linux.cn/article-5708-1.html 由于一切都迁移到了云上,作为提高职员生产力的一种方式,虚拟远程桌面在工业中越来越流行.尤其对于那些需要在多个地方和设备之间不停 ...

  3. ubuntu :安装skype聊天工具

    如题,今天就想搞个软件在ubuntu能聊天,查一下skype,好像网上有人说不是每个安装包都用的了,skype-ubuntu-precise_4.2.0.13-1_i386.deb可以, 我在微盘下载 ...

  4. 02 - Unit01:服务器返回数据的json处理+搭建项目环境

    服务器返回数据的json处理+搭建项目环境 服务器返回数据的json处理 springMVC JSP响应流程 请求 -->DispatcherServlet -->HandlerMappi ...

  5. erlang异常处理备忘

    捕获所有异常得用_:_,看例子 try aa:bb() of Value -> Value catch _:_ -> "" end 如果单表达式不需要有返回值,直接异常 ...

  6. [转] Jsp 重点

    讲师:传智播客 方立勋 4个域对象: pageContext | page 域 request | request 域 session | session 域 servletContext | app ...

  7. 安装git之后,桌面图标出现很多的蓝色问号

    今天在搞git之后,开机发现多了好多的问号: 这是因为我们在桌面创建了版本库了. 这个时候我们在系统中吧隐藏的文件夹显示出来.这个时候会看到桌面上有一个隐藏的git文件夹.把这个文件夹删除掉之后,刷新 ...

  8. Java类的初始化与实例对象的初始化

    Java对象初始化详解 2013/04/10 · 开发 · 1 评论· java 分享到:43 与<YII框架>不得不说的故事—扩展篇 sass进阶篇 Spring事务管理 Android ...

  9. fir 窗口设计法

    加窗的原因.对于理想的低通滤波器H(exp(jw)),其h(n)是无限长序列.这是可以证明的.因此为了得到有限长的h(n)就需要截断,而这个过程就是加窗.由于h(n)截断即其频率响应就和理想的低通滤波 ...

  10. Python web框架 Tornado(三)自定义session组件

    我们在学习Django框架的过程中,内部封装了session组件,以方便于我们使用进行验证.但是Tornado框架是没有session的,所以如果想使用session的话,就需要我们自己定制相对应的组 ...