【BZOJ 3771】 3771: Triple (FFT+容斥)
3771: Triple
Time Limit: 20 Sec Memory Limit: 64 MB
Submit: 547 Solved: 307Description
我们讲一个悲伤的故事。从前有一个贫穷的樵夫在河边砍柴。这时候河里出现了一个水神,夺过了他的斧头,说:“这把斧头,是不是你的?”樵夫一看:“是啊是啊!”水神把斧头扔在一边,又拿起一个东西问:“这把斧头,是不是你的?”樵夫看不清楚,但又怕真的是自己的斧头,只好又答:“是啊是啊!”水神又把手上的东西扔在一边,拿起第三个东西问:“这把斧头,是不是你的?”樵夫还是看不清楚,但是他觉得再这样下去他就没法砍柴了。于是他又一次答:“是啊是啊!真的是!”水神看着他,哈哈大笑道:“你看看你现在的样子,真是丑陋!”之后就消失了。樵夫觉得很坑爹,他今天不仅没有砍到柴,还丢了一把斧头给那个水神。于是他准备回家换一把斧头。回家之后他才发现真正坑爹的事情才刚开始。水神拿着的的确是他的斧头。但是不一定是他拿出去的那把,还有可能是水神不知道怎么偷偷从他家里拿走的。换句话说,水神可能拿走了他的一把,两把或者三把斧头。樵夫觉得今天真是倒霉透了,但不管怎么样日子还得过。他想统计他的损失。樵夫的每一把斧头都有一个价值,不同斧头的价值不同。总损失就是丢掉的斧头价值和。他想对于每个可能的总损失,计算有几种可能的方案。注意:如果水神拿走了两把斧头a和b,(a,b)和(b,a)视为一种方案。拿走三把斧头时,(a,b,c),(b,c,a),(c,a,b),(c,b,a),(b,a,c),(a,c,b)视为一种方案。Input
第一行是整数N,表示有N把斧头。接下来n行升序输入N个数字Ai,表示每把斧头的价值。Output
若干行,按升序对于所有可能的总损失输出一行x y,x为损失值,y为方案数。Sample Input
4
4
5
6
7Sample Output
4 1
5 1
6 1
7 1
9 1
10 1
11 2
12 1
13 1
15 1
16 1
17 1
18 1
样例解释
11有两种方案是4+7和5+6,其他损失值都有唯一方案,例如4=4,5=5,10=4+6,18=5+6+7.HINT
所有数据满足:Ai<=40000
【分析】
这个小容斥还是挺容易错的哦。。
仅取一个相同的多项式a
仅取两个相同的多项式b
仅取三个相同的多项式c
则一个:a
两个:(a*a-b)/2
三个:(a*a*a-a*b*3+2*c)/6
用FFT求卷积就好了
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<cmath>
using namespace std;
#define Maxn 800010
const double eps=0.000001;
const double pi=acos(-); struct P
{
double x,y;
P() {x=y=;}
P(double x,double y):x(x),y(y){}
friend P operator + (P x,P y) {return P(x.x+y.x,x.y+y.y);}
friend P operator - (P x,P y) {return P(x.x-y.x,x.y-y.y);}
friend P operator * (P x,P y) {return P(x.x*y.x-x.y*y.y,x.x*y.y+x.y*y.x);}
friend P operator * (P x,int y) {return P(x.x*y,x.y*y);}
friend P operator / (P x,int y) {return P(x.x/y,x.y/y);}
}a[Maxn],b[Maxn],c[Maxn]; int R[Maxn],nn;
void fft(P *s,int f)
{
for(int i=;i<nn;i++) if(i<R[i]) swap(s[i],s[R[i]]);
for(int i=;i<nn;i<<=)
{
P wn(cos(pi/i),f*sin(pi/i));
for(int j=;j<nn;j+=i<<)
{
P w(,);
for(int k=;k<i;k++,w=w*wn)
{
P x=s[j+k],y=w*s[j+k+i];
s[j+k]=x+y;s[j+k+i]=x-y;
}
}
}
if(f==-)
{
for(int i=;i<=nn;i++)
{
s[i]=s[i]/nn;
}
}
} int main()
{
int n,mx=;
scanf("%d",&n);n--;
for(int i=;i<=n;i++)
{
int x;
scanf("%d",&x);
a[x].x=;
b[*x].x=;
c[*x].x=;
mx=max(mx,x);
}
nn=;int ll=;
while(nn<=*mx) nn<<=,ll++;
for(int i=;i<=nn;i++) R[i]=(R[i>>]>>)|((i&)<<(ll-));
fft(a,);
fft(b,);fft(c,);
for(int i=;i<=nn;i++)
{
a[i]=a[i]+(a[i]*a[i]-b[i])/+(a[i]*a[i]*a[i]-a[i]*b[i]*+c[i])/;
}
fft(a,-);
for(int i=;i<=nn;i++)
{
if(int(a[i].x+0.5)){
printf("%d %d\n",i,int(a[i].x+0.5));
}
}
return ;
}
【对拍好垃圾啊。。
2017-04-13 20:37:44
【BZOJ 3771】 3771: Triple (FFT+容斥)的更多相关文章
- BZOJ 3771: Triple(FFT+容斥)
题面 Description 我们讲一个悲伤的故事. 从前有一个贫穷的樵夫在河边砍柴. 这时候河里出现了一个水神,夺过了他的斧头,说: "这把斧头,是不是你的?" 樵夫一看:&qu ...
- spoj TSUM - Triple Sums fft+容斥
题目链接 首先忽略 i < j < k这个条件.那么我们构造多项式$$A(x) = \sum_{1现在我们考虑容斥:1. $ (\sum_{}x)^3 = \sum_{}x^3 + 3\s ...
- bzoj3771: Triple(容斥+生成函数+FFT)
传送门 咳咳忘了容斥了-- 设\(A(x)\)为斧头的生成函数,其中第\(x^i\)项的系数为价值为\(i\)的斧头个数,那么\(A(x)+A^2(x)+A^3(x)\)就是答案(于是信心满满的打了一 ...
- HDU 4609 3-idiots FFT+容斥
一点吐槽:我看网上很多分析,都是在分析这个题的时候,讲了半天的FFT,其实我感觉更多的把FFT当工具用就好了 分析:这个题如果数据小,统计两个相加为 x 的个数这一步骤(这个步骤其实就是求卷积啊),完 ...
- [BZOJ 3198] [Sdoi2013] spring 【容斥 + Hash】
题目链接:BZOJ - 3198 题目分析 题目要求求出有多少对泉有恰好 k 个值相等. 我们用容斥来做. 枚举 2^6 种状态,某一位是 1 表示这一位相同,那么假设 1 的个数为 x . 答案就是 ...
- [BZOJ 3129] [Sdoi2013] 方程 【容斥+组合数取模+中国剩余定理】
题目链接:BZOJ - 3129 题目分析 使用隔板法的思想,如果没有任何限制条件,那么方案数就是 C(m - 1, n - 1). 如果有一个限制条件是 xi >= Ai ,那么我们就可以将 ...
- BZOJ.4558.[JLOI2016]方(计数 容斥)
BZOJ 洛谷 图基本来自这儿. 看到这种计数问题考虑容斥.\(Ans=\) 没有限制的正方形个数 - 以\(i\)为顶点的正方形个数 + 以\(i,j\)为顶点的正方形个数 - 以\(i,j,k\) ...
- bzoj 4671 异或图 —— 容斥+斯特林反演+线性基
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4671 首先,考虑容斥,就是设 \( t[i] \) 表示至少有 \( i \) 个连通块的方 ...
- bzoj 2669 [cqoi2012]局部极小值 DP+容斥
2669: [cqoi2012]局部极小值 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 838 Solved: 444[Submit][Status ...
随机推荐
- 《JavaScript 实战》:实现图片幻滑动展示效果
滑动展示效果主要用在图片或信息的滑动展示,也可以设置一下做成简单的口风琴(Accordion)效果.这个其实就是以前写的图片滑动展示效果的改进版,那是我第一篇比较受关注的文章,是时候整理一下了. 有如 ...
- TED_Topic2:My desperate journey with a human smuggler
My desperate journey with a human smuggler By Barat Ali Batoor When I was a child there was a toy wh ...
- 【CodeForces】866D. Buy Low Sell High
[题意]已知n天股价,每天可以买入一股或卖出一股或不作为,最后必须持0股,求最大收益. [算法]堆 贪心? [题解] 不作为思想:[不作为=买入再卖出] 根据不作为思想,可以推出中转站思想. 中转站思 ...
- 通过删除hbase表中的region来达到删除表中数据
公司最近在搞一个hbase删除数据,由于在建表的时候是通过region来对每日的数据进行存储的,所以要求在删除的时候直接通过删除region的来删除数据(最好的方案是只删除region中的数据,不把r ...
- 【leetcode 简单】第四十九题 颠倒二进制位
颠倒给定的 32 位无符号整数的二进制位. 示例: 输入: 43261596 输出: 964176192 解释: 43261596 的二进制表示形式为 000000101001010000011110 ...
- HDU 1172 猜数字 (模拟)
题目链接 Problem Description 猜数字游戏是gameboy最喜欢的游戏之一.游戏的规则是这样的:计算机随机产生一个四位数,然后玩家猜这个四位数是什么.每猜一个数,计算机都会告诉玩家猜 ...
- 图解IIS8上解决ASP.Net第一次访问慢的处理
- Python3中字符串的编码与解码以及编码之间转换(decode、encode)
一.编码 二.编码与解码 Python3中对py文件的默认编码是urf-8.但是字符串的编码是Unicode. 由于Unicode采用32位4个字节来表示一个字符,存储和传输太浪费资源,所以传输和存储 ...
- 工作当中遇到的ssh错误
[root@1bcc1d3f9666 externalscripts]# /usr/sbin/sshd Could not load host key: /etc/ssh/ssh_host_rsa_k ...
- js固定小数位数 .toFixed()
toFixed(num)法可把 Number 四舍五入为指定小数位数的数字. num为需要固定的位数 var num=2;console.log(num.toFixed(2));//2.00;var ...