【BZOJ 4171】 4171: Rhl的游戏 (高斯消元)
4171: Rhl的游戏
Time Limit: 20 Sec Memory Limit: 128 MB
Submit: 74 Solved: 33
[Submit][Status][Discuss]Description
RHL最近迷上一个小游戏:Flip it。游戏的规则很简单,在一个N*M的格子上,有一些格子是黑色,有一些是白色。每选择一个格子按一次,格子以及周围边相邻的格子都会翻转颜色(边相邻指至少与该格子有一条公共边的格子),黑变白,白变黑。RHL希望把所有格子都变成白色的。不幸的是,有一些格子坏掉了,无法被按下。这时,它可以完成游戏吗?Input
第一行一个整数T,表示T组数据。每组数据开始于三个整数n,m,k,分别表示格子的高度和宽度、坏掉格子的个数。接下来的n行,每行一个长度m的字符串,表示格子状态为'B'或'W'。最后k行,每行两个整数Xi,Yi(1≤Xi≤n,1≤Yi≤m),表示坏掉的格子。n,m,k<=256,T<=10Output
对于每组数据,先输出一行Case #i: (1≤i≤T)如果可以成功,输出YES,否则输出NO。Sample Input
2
3 3 0
WBW
BBB
WBW
3 3 2
WBW
BBB
WBW
2 2
3 2Sample Output
Case #1:
YES
Case #2:
NOHINT
Source
【分析】
今天脑子真的不好,这种题既知道思路也不会打。。还要膜奥爷爷给我理思路了。。
首先,显然是高斯消元。但当然不是每个格子都是未知量。其实只要枚举第一行,就能推出全部。
$f[i][j]$是bitset表示的点$(i,j)$的状态,他们的异或和表示$(i,j)$这个点按还是不按。
第一行$f[1][j]=(0,0,...1,0,0,...)$,只有第$j$位为1。
当$(i,j)$初始为$B$,$a[i][j]=1$,否则$a[i][j]=0$。
举个栗子:$nw$表示$(2,1)$这个点按还是不按,那么$nw$^$x1$^$x2$=$a[1][1]$ → $nw$=$x1$^$x2$^$a[1][1]$
每个点都可以用第一行的$x$和$a$数组表示出来,写成$f[i][j]$即$f[2][1]=(1,1,0,0,0,0,...,a[1][1])$ 【这就是奥爷爷举的例子啦,想了一会我终于懂了
【有时候真的不要太纠结这个是个什么方程什么的,就表示你想表示的东西就好了,毕竟异或还是很通用,很多种理解方式都可以使用高斯消元的
常数的异或和放在$m+1$位。、
对于损坏点$(x,y)$即 $f[x][y][1]$^$f[x][y][2]$^...$f[x][y][m+1]$=0,则$f[x][y][1]$^...$f[x][y][m]$=$f[x][y][m+1] $,看成是$m$个元的方程。
对于最后一行,我们前面没有保证他的值是对的,所以要列$m$个方程,
$f[n][j]$^$f[n][j-1]$ ^$f[n][j+1]$ ^$f[n-1][j]$=$a[n][j]$ 也把$m+1$项弄到右边去和$a[n][j]$异或得到新的方程。
高斯消元判断是否有解就好了。
注意每次求$f[i][j]$的时候是保证$(i-1,j)$这个点的状态正确。
放弃了抄代码,终于开始自己想,自己打的时候,终于AC了。。
事实证明,理解别人的东西还是困难的,还是要自己多多想啊!!
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<bitset>
using namespace std;
#define Maxn 310 char s[Maxn];
int a[Maxn][Maxn];
bitset<Maxn > f[Maxn][Maxn],w[*Maxn];
int n,m,k; bool solve()
{
for(int j=;j<=m;j++)
{
for(int i=;i<=n;i++) f[][j][i]=;
f[][j][j]=;
}
for(int i=;i<=n;i++)
for(int j=;j<=m;j++)
{
f[i][j]=f[i-][j]^f[i-][j];
if(j>) f[i][j]^=f[i-][j-];
if(j<m) f[i][j]^=f[i-][j+];
f[i][j][m+]=f[i][j][m+]^a[i-][j];
}
int cnt=;
for(int i=;i<=k;i++)
{
int x,y;
scanf("%d%d",&x,&y);
w[++cnt]=f[x][y];
}
w[++cnt]=f[n][]^f[n][]^f[n-][];
w[cnt][m+]=w[cnt][m+]^a[n][];
for(int j=;j<m;j++) w[++cnt]=f[n][j-]^f[n][j]^f[n][j+]^f[n-][j],w[cnt][m+]=w[cnt][m+]^a[n][j];
w[++cnt]=f[n][m-]^f[n][m]^f[n-][m];w[cnt][m+]=w[cnt][m+]^a[n][m];
int i=;
for(int j=;j<=m;j++)
{
int t=;
for(int k=i;k<=cnt;k++) if(w[k][j]) {t=k;break;}
if(!t) continue;
swap(w[i],w[t]);
for(int k=i+;k<=cnt;k++) if(w[k][j]) w[k]^=w[i];
i++;
}
bool ok=;
for(int i=;i<=cnt;i++)
{
bool p=;
for(int j=;j<=m;j++) if(w[i][j]!=) {p=;break;}
if(p&&w[i][m+]) return ;
}
return ;
} int main()
{
int T,kase=;
scanf("%d",&T);
while(T--)
{
scanf("%d%d%d",&n,&m,&k);
for(int i=;i<=n;i++)
{
scanf("%s",s+);
for(int j=;j<=m;j++)
{
if(s[j]=='B') a[i][j]=;
else a[i][j]=;
}
}
printf("Case #%d:\n",++kase);
if(solve()) printf("YES\n");
else printf("NO\n");
}
return ;
}
2017-04-10 22:15:50
【BZOJ 4171】 4171: Rhl的游戏 (高斯消元)的更多相关文章
- BZOJ 3105: [cqoi2013]新Nim游戏 [高斯消元XOR 线性基]
以后我也要用传送门! 题意:一些数,选择一个权值最大的异或和不为0的集合 终于有点明白线性基是什么了...等会再整理 求一个权值最大的线性无关子集 线性无关子集满足拟阵的性质,贪心选择权值最大的,用高 ...
- [BZOJ 4820] [SDOI2017] 硬币游戏(高斯消元+概率论+字符串hash)
[BZOJ 4820] [SDOI2017] 硬币游戏(高斯消元+概率论+字符串hash) 题面 扔很多次硬币后,用H表示正面朝上,用T表示反面朝上,会得到一个硬币序列.比如HTT表示第一次正面朝上, ...
- BZOJ 2466 中山市选2009 树 高斯消元+暴力
题目大意:树上拉灯游戏 高斯消元解异或方程组,对于全部的自由元暴力2^n枚举状态,代入计算 这做法真是一点也不优雅... #include <cstdio> #include <cs ...
- [Sdoi2017]硬币游戏 [高斯消元 KMP]
[Sdoi2017]硬币游戏 题意:硬币序列,H T等概率出现,\(n \le 300\)个人猜了一个长为$ m \le 300$的字符串,出现即获胜游戏结束.求每个人获胜概率 考场用了[1444: ...
- 【bzoj3105】[cqoi2013]新Nim游戏 高斯消元求线性基
题目描述 传统的Nim游戏是这样的:有一些火柴堆,每堆都有若干根火柴(不同堆的火柴数量可以不同).两个游戏者轮流操作,每次可以选一个火柴堆拿走若干根火柴.可以只拿一根,也可以拿走整堆火柴,但不能同时从 ...
- BZOJ 1923 外星千足虫(高斯消元)
题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=1923 题意:有n个数字,m次测试.每个数字为0或者1.每次测试选出一些数字出来把他们加起 ...
- BZOJ 2707: [SDOI2012]走迷宫( tarjan + 高斯消元 )
数据范围太大不能直接高斯消元, tarjan缩点然后按拓扑逆序对每个强连通分量高斯消元就可以了. E(u) = 1 + Σ E(v) / degree(u) 对拍时发现网上2个程序的INF判断和我不一 ...
- BZOJ 2337: [HNOI2011]XOR和路径( 高斯消元 )
一位一位考虑异或结果, f(x)表示x->n异或值为1的概率, 列出式子然后高斯消元就行了 --------------------------------------------------- ...
- BZOJ 1770: [Usaco2009 Nov]lights 燈( 高斯消元 )
高斯消元解xor方程组...暴搜自由元+最优性剪枝 -------------------------------------------------------------------------- ...
- BZOJ 2466: [中山市选2009]树( 高斯消元 )
高斯消元解异或方程组...然后对自由元进行暴搜.树形dp应该也是可以的... ------------------------------------------------------------- ...
随机推荐
- 使用 WebSockets 技术的 9 个应用场景
没有其他技术能够像WebSocket一样提供真正的双向通信,许多web开发者仍然是依赖于ajax的长轮询来实现.对Websocket缺少热情,也许是因为多年前他的安全性的脆弱,抑或者是缺少浏览器的支持 ...
- 【CodeForces】576 D. Flights for Regular Customers
[题目]D. Flights for Regular Customers [题意]给定n个点m条边的有向图,每条边有di表示在经过该边前必须先经过di条边,边可重复经过,求1到n的最小经过边数.n,m ...
- 下载Google My Tracks
http://code.google.com/p/mytracks/source/browse/?name=2.0.2#hg%2FMyTracks%253Fstate%253Dclosed 需要类似的 ...
- U盘出现大量乱码文件,并且不能彻底删除
问题如图所示: 问题出现原因:不正常的插拔等情况造成的,导致U盘的文件分配表错乱了 解决方法:参考http://bbs.cfanclub.net/thread-405004-1-1.html 运行ch ...
- Java从零到企业级电商项目实战
欢迎关注我的微信公众号:"Java面试通关手册"(坚持原创,分享各种Java学习资源,面试题,优质文章,以及企业级Java实战项目回复关键字免费领取)回复关键字:"电商项 ...
- struct msghdr和struct cmsghdr【转载】
理解struct msghdr当我第一次看到他时,他看上去似乎是一个需要创建的巨大的结构.但是不要怕.其结构定义如下:struct msghdr { void *msg_name ...
- sicily 1003. Hit or Miss
Description One very simple type of solitaire game known as "Hit or Miss" (also known as & ...
- python模块之cx_Oracle
安装cx_Oracle wget http://download.oracle.com/otn/linux/instantclient/122010/instantclient-basic-linux ...
- mysql root 密码恢复
1.停止mysql服务 service mysql stop 2.启动mysql时不启动授权表,跳过权限验证使用空密码登陆 mysqld_safe --skip-grant-tables & ...
- POJ 2349 Arctic Network(最小生成树+求第k大边)
题目链接:http://poj.org/problem?id=2349 题目大意:有n个前哨,和s个卫星通讯装置,任何两个装了卫星通讯装置的前哨都可以通过卫星进行通信,而不管他们的位置. 否则,只有两 ...