4171: Rhl的游戏

Time Limit: 20 Sec  Memory Limit: 128 MB
Submit: 74  Solved: 33
[Submit][Status][Discuss]

Description

RHL最近迷上一个小游戏:Flip it。游戏的规则很简单,在一个N*M的格子上,有一些格子是黑色,有一些是白色
。每选择一个格子按一次,格子以及周围边相邻的格子都会翻转颜色(边相邻指至少与该格子有一条公共边的格子
),黑变白,白变黑。RHL希望把所有格子都变成白色的。不幸的是,有一些格子坏掉了,无法被按下。这时,它
可以完成游戏吗?

Input

第一行一个整数T,表示T组数据。
每组数据开始于三个整数n,m,k,分别表示格子的高度和宽度、坏掉格子的个数。接下来的n行,每行一个长度m的
字符串,表示格子状态为'B'或'W'。最后k行,每行两个整数Xi,Yi(1≤Xi≤n,1≤Yi≤m),表示坏掉的格子。
n,m,k<=256,T<=10

Output

对于每组数据,先输出一行Case #i: (1≤i≤T)
如果可以成功,输出YES,否则输出NO。

Sample Input

2
3 3 0
WBW
BBB
WBW
3 3 2
WBW
BBB
WBW
2 2
3 2

Sample Output

Case #1:
YES
Case #2:
NO

HINT

Source

【分析】

  今天脑子真的不好,这种题既知道思路也不会打。。还要膜奥爷爷给我理思路了。。

  首先,显然是高斯消元。但当然不是每个格子都是未知量。其实只要枚举第一行,就能推出全部。

  $f[i][j]$是bitset表示的点$(i,j)$的状态,他们的异或和表示$(i,j)$这个点按还是不按。

  第一行$f[1][j]=(0,0,...1,0,0,...)$,只有第$j$位为1。

  当$(i,j)$初始为$B$,$a[i][j]=1$,否则$a[i][j]=0$。

  举个栗子:$nw$表示$(2,1)$这个点按还是不按,那么$nw$^$x1$^$x2$=$a[1][1]$ → $nw$=$x1$^$x2$^$a[1][1]$

  每个点都可以用第一行的$x$和$a$数组表示出来,写成$f[i][j]$即$f[2][1]=(1,1,0,0,0,0,...,a[1][1])$ 【这就是奥爷爷举的例子啦,想了一会我终于懂了

  【有时候真的不要太纠结这个是个什么方程什么的,就表示你想表示的东西就好了,毕竟异或还是很通用,很多种理解方式都可以使用高斯消元的

  常数的异或和放在$m+1$位。、

  对于损坏点$(x,y)$即 $f[x][y][1]$^$f[x][y][2]$^...$f[x][y][m+1]$=0,则$f[x][y][1]$^...$f[x][y][m]$=$f[x][y][m+1] $,看成是$m$个元的方程。

  对于最后一行,我们前面没有保证他的值是对的,所以要列$m$个方程,

  $f[n][j]$^$f[n][j-1]$ ^$f[n][j+1]$ ^$f[n-1][j]$=$a[n][j]$ 也把$m+1$项弄到右边去和$a[n][j]$异或得到新的方程。

  高斯消元判断是否有解就好了。

  注意每次求$f[i][j]$的时候是保证$(i-1,j)$这个点的状态正确。

  放弃了抄代码,终于开始自己想,自己打的时候,终于AC了。。

  事实证明,理解别人的东西还是困难的,还是要自己多多想啊!!

 #include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<bitset>
using namespace std;
#define Maxn 310 char s[Maxn];
int a[Maxn][Maxn];
bitset<Maxn > f[Maxn][Maxn],w[*Maxn];
int n,m,k; bool solve()
{
for(int j=;j<=m;j++)
{
for(int i=;i<=n;i++) f[][j][i]=;
f[][j][j]=;
}
for(int i=;i<=n;i++)
for(int j=;j<=m;j++)
{
f[i][j]=f[i-][j]^f[i-][j];
if(j>) f[i][j]^=f[i-][j-];
if(j<m) f[i][j]^=f[i-][j+];
f[i][j][m+]=f[i][j][m+]^a[i-][j];
}
int cnt=;
for(int i=;i<=k;i++)
{
int x,y;
scanf("%d%d",&x,&y);
w[++cnt]=f[x][y];
}
w[++cnt]=f[n][]^f[n][]^f[n-][];
w[cnt][m+]=w[cnt][m+]^a[n][];
for(int j=;j<m;j++) w[++cnt]=f[n][j-]^f[n][j]^f[n][j+]^f[n-][j],w[cnt][m+]=w[cnt][m+]^a[n][j];
w[++cnt]=f[n][m-]^f[n][m]^f[n-][m];w[cnt][m+]=w[cnt][m+]^a[n][m];
int i=;
for(int j=;j<=m;j++)
{
int t=;
for(int k=i;k<=cnt;k++) if(w[k][j]) {t=k;break;}
if(!t) continue;
swap(w[i],w[t]);
for(int k=i+;k<=cnt;k++) if(w[k][j]) w[k]^=w[i];
i++;
}
bool ok=;
for(int i=;i<=cnt;i++)
{
bool p=;
for(int j=;j<=m;j++) if(w[i][j]!=) {p=;break;}
if(p&&w[i][m+]) return ;
}
return ;
} int main()
{
int T,kase=;
scanf("%d",&T);
while(T--)
{
scanf("%d%d%d",&n,&m,&k);
for(int i=;i<=n;i++)
{
scanf("%s",s+);
for(int j=;j<=m;j++)
{
if(s[j]=='B') a[i][j]=;
else a[i][j]=;
}
}
printf("Case #%d:\n",++kase);
if(solve()) printf("YES\n");
else printf("NO\n");
}
return ;
}

2017-04-10 22:15:50

【BZOJ 4171】 4171: Rhl的游戏 (高斯消元)的更多相关文章

  1. BZOJ 3105: [cqoi2013]新Nim游戏 [高斯消元XOR 线性基]

    以后我也要用传送门! 题意:一些数,选择一个权值最大的异或和不为0的集合 终于有点明白线性基是什么了...等会再整理 求一个权值最大的线性无关子集 线性无关子集满足拟阵的性质,贪心选择权值最大的,用高 ...

  2. [BZOJ 4820] [SDOI2017] 硬币游戏(高斯消元+概率论+字符串hash)

    [BZOJ 4820] [SDOI2017] 硬币游戏(高斯消元+概率论+字符串hash) 题面 扔很多次硬币后,用H表示正面朝上,用T表示反面朝上,会得到一个硬币序列.比如HTT表示第一次正面朝上, ...

  3. BZOJ 2466 中山市选2009 树 高斯消元+暴力

    题目大意:树上拉灯游戏 高斯消元解异或方程组,对于全部的自由元暴力2^n枚举状态,代入计算 这做法真是一点也不优雅... #include <cstdio> #include <cs ...

  4. [Sdoi2017]硬币游戏 [高斯消元 KMP]

    [Sdoi2017]硬币游戏 题意:硬币序列,H T等概率出现,\(n \le 300\)个人猜了一个长为$ m \le 300$的字符串,出现即获胜游戏结束.求每个人获胜概率 考场用了[1444: ...

  5. 【bzoj3105】[cqoi2013]新Nim游戏 高斯消元求线性基

    题目描述 传统的Nim游戏是这样的:有一些火柴堆,每堆都有若干根火柴(不同堆的火柴数量可以不同).两个游戏者轮流操作,每次可以选一个火柴堆拿走若干根火柴.可以只拿一根,也可以拿走整堆火柴,但不能同时从 ...

  6. BZOJ 1923 外星千足虫(高斯消元)

    题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=1923 题意:有n个数字,m次测试.每个数字为0或者1.每次测试选出一些数字出来把他们加起 ...

  7. BZOJ 2707: [SDOI2012]走迷宫( tarjan + 高斯消元 )

    数据范围太大不能直接高斯消元, tarjan缩点然后按拓扑逆序对每个强连通分量高斯消元就可以了. E(u) = 1 + Σ E(v) / degree(u) 对拍时发现网上2个程序的INF判断和我不一 ...

  8. BZOJ 2337: [HNOI2011]XOR和路径( 高斯消元 )

    一位一位考虑异或结果, f(x)表示x->n异或值为1的概率, 列出式子然后高斯消元就行了 --------------------------------------------------- ...

  9. BZOJ 1770: [Usaco2009 Nov]lights 燈( 高斯消元 )

    高斯消元解xor方程组...暴搜自由元+最优性剪枝 -------------------------------------------------------------------------- ...

  10. BZOJ 2466: [中山市选2009]树( 高斯消元 )

    高斯消元解异或方程组...然后对自由元进行暴搜.树形dp应该也是可以的... ------------------------------------------------------------- ...

随机推荐

  1. JS操作CSS随机改变网页背景

    今天有个朋友在weibo上问我可不可以用JS和CSS让页面每次刷新随机产生一张背景图,当然我的回答是可以的.具体可以这样做: 1.用JS定义一个图片数组,里面存放你想要随机展示的图片 1 2 3 4 ...

  2. 【POJ】3177 Redundant Paths

    [算法]边双连通分量 [题意&题解]http://blog.csdn.net/geniusluzh/article/details/6619575 (注意第一份代码是错误的) 一些细节: 1. ...

  3. Use of exceptionless, 作全局日志分布式记录处理

    Download latest release of exceptionless on github and deploy on Window server, by default exception ...

  4. 给vim安装YouCompleteMe

    要安装YouCompleteMe ,vim须支持python.看是否支持,可以在vim中:version 查看, 如果python前有+号,就是支持,减号就是不支持. 如果不支持,需要以编译安装方式重 ...

  5. 首次成功的web渗透

    web渗透 今天给大家讲一个最近做的一件令我振奋的一件事情 渗透培训刚刚结束的第二天 我在公网上挖到了我人生中的第一个站 总体来说个人真的很振奋人心      这个网站还没有进行更改但我已经通知了他们 ...

  6. xv6/bootasm.S + xv6/bootmain.c

    xv6/bootasm.S #include "asm.h" #include "memlayout.h" #include "mmu.h" ...

  7. 对 makefile 中 .DEFAULT 的理解

    上例子: all:gao @echo "final".DEFAULT: @echo "In default" 由于 gao 是一个前提条件,但是 makefil ...

  8. Redis安装和客户端cli常见操作

    安装Redis $ wget http://download.redis.io/releases/redis-4.0.6.tar.gz $ tar xzf redis-4.0.6.tar.gz $ c ...

  9. GPS位置模拟-安卓

    测试定位功能时都需要位置模拟,一般有如下3种方式: a)手机上安装第三方模拟软件:需要Root: b)PC模拟其中运行app并模拟位置:不能在真机上运行,手机兼容性不能测试到: b)在app中让开发增 ...

  10. Learning a Deep Compact Image Representation for Visual Tracking

    这篇博客对论文进行了部分翻译http://blog.csdn.net/vintage_1/article/details/19546953,不过个人觉得博主有些理解有误. 这篇博客简单分析了代码htt ...