【题意】给定一个[0,m-1]范围内的数字集合S,从中选择n个数字(可重复)构成序列。给定x,求序列所有数字乘积%m后为x的序列方案数%1004535809。1<=n<=10^9,3<=m<=8000,m为素数,1<=x<=m-1。(个人认为题意修改错误)

【算法】NTT+生成函数+离散对数+快速幂

【题解】由Πai=x(%m),可得Σlog ai=log x(%(m-1)),其中log以m的原根g为底。

所以通过将集合S和x对m取离散对数,将乘积转化为和,从而方便生成函数运算。

定义,信息为数字和,选择项为数字个数。

对于1个数字,若转化后的S中存在x,则f(x)=1,否则f(x)=0。

那么ans=f^n(x),使用以NTT为乘法运算的快速幂即可。

注意:

1.每次NTT后,将>=m-1的部分叠加到%(m-1)的位置。

2.每次dft会改变原数组,所以要提前复制一份。

3.若集合S中有数字0,无视。

#include<cstdio>
#include<algorithm>
#include<cmath>
using namespace std;
const int maxn=,MOD=;
int a[maxn],b[maxn],tot,n,X,p,K,logs[maxn],f[maxn],ans[maxn],c[maxn];
void exgcd(int a,int b,int &x,int &y){
if(!b){x=;y=;}
else{exgcd(b,a%b,y,x);y-=x*(a/b);}
}
int inv(int a){int x,y;exgcd(a,MOD,x,y);return (x%MOD+MOD)%MOD;}
int power(int x,int k,int p){
int ans=;
while(k){
if(k&)ans=1ll*ans*x%p;
x=1ll*x*x%p;
k>>=;
}
return ans;
}
namespace ntt{
int o[maxn],oi[maxn];
void init(int n){
int g=,x=power(g,(MOD-)/n,MOD);
for(int i=;i<n;i++){
o[i]=(i==?:1ll*o[i-]*x%MOD);
oi[i]=inv(o[i]);
}
}
void transform(int *a,int n,int *o){
int k=;
while((<<k)<n)k++;
for(int i=;i<n;i++){
int t=;
for(int j=;j<k;j++)if((<<j)&i)t|=(<<(k-j-));
if(i<t)swap(a[i],a[t]);
}
for(int l=;l<=n;l*=){
int m=l>>;
for(int *p=a;p!=a+n;p+=l){
for(int i=;i<m;i++){
int t=1ll*o[n/l*i]*p[i+m]%MOD;
p[i+m]=(p[i]-t+MOD)%MOD;
p[i]=(p[i]+t)%MOD;
}
}
}
}
void dft(int *a,int n){transform(a,n,o);}
void idft(int *a,int n){
transform(a,n,oi);
int nn=inv(n);
for(int i=;i<n;i++)a[i]=1ll*a[i]*nn%MOD;
}
void multply(int *a,int *b,int n){
for(int i=;i<n;i++)c[i]=b[i];
dft(a,n);dft(c,n);
for(int i=;i<n;i++)a[i]=1ll*a[i]*c[i]%MOD;
idft(a,n);
for(int i=p-;i<n;i++)if(a[i])a[i%(p-)]=(a[i%(p-)]+a[i])%MOD,a[i]=;
}
}
int find(int p){
int sq=(int)(sqrt(p)+0.5),P=p-;
for(int i=;i<=sq;i++)if(P!=){
if(P%i==){
b[++tot]=i;
while(P%i==)P/=i;
}
}
if(P!=)b[++tot]=P;
for(int i=;i<=p;i++){
bool ok=;
for(int j=;j<=tot;j++)if(power(i,(p-)/b[j],p)==){ok=;break;}
if(ok)return i;
}
return ;
}
void pre_log(){
int g=find(p),x=;
for(int i=;i<p-;i++){
logs[x]=i;
x=1ll*x*g%p;
}
}
void POWER(){
int N=;
while(N<p+p-)N*=;
ntt::init(N);
ans[]=;
while(K){
if(K&)ntt::multply(ans,f,N);
ntt::multply(f,f,N);
K>>=;
}
}
int main(){
scanf("%d%d%d%d",&K,&p,&X,&n);
pre_log();
int x;
for(int i=;i<=n;i++){
scanf("%d",&x);
if(!x)continue;
f[logs[x]]=;
}
POWER();
printf("%d",ans[logs[X]]);
return ;
}

【BZOJ】3992: [SDOI2015]序列统计 NTT+生成函数的更多相关文章

  1. BZOJ 3992: [SDOI2015]序列统计 NTT+快速幂

    3992: [SDOI2015]序列统计 Time Limit: 30 Sec  Memory Limit: 128 MBSubmit: 1155  Solved: 532[Submit][Statu ...

  2. bzoj 3992 [SDOI2015]序列统计——NTT(循环卷积&&快速幂)

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3992 有转移次数.模M余数.方案数三个值,一看就是系数的地方放一个值.指数的地方放一个值.做 ...

  3. bzoj 3992 [SDOI2015] 序列统计 —— NTT (循环卷积+快速幂)

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3992 (学习NTT:https://riteme.github.io/blog/2016-8 ...

  4. bzoj 3992: [SDOI2015]序列统计 NTT+原根

    今天开始学习丧心病狂的多项式qaq......    . code: #include <bits/stdc++.h> #define ll long long #define setIO ...

  5. BZOJ 3992: [SDOI2015]序列统计 [快速数论变换 生成函数 离散对数]

    3992: [SDOI2015]序列统计 Time Limit: 30 Sec  Memory Limit: 128 MBSubmit: 1017  Solved: 466[Submit][Statu ...

  6. BZOJ 3992: [SDOI2015]序列统计 快速幂+NTT(离散对数下)

    3992: [SDOI2015]序列统计 Description 小C有一个集合S,里面的元素都是小于M的非负整数.他用程序编写了一个数列生成器,可以生成一个长度为N的数列,数列中的每个数都属于集合S ...

  7. [BZOJ 3992][SDOI2015]序列统计

    3992: [SDOI2015]序列统计 Time Limit: 30 Sec  Memory Limit: 128 MBSubmit: 2275  Solved: 1090[Submit][Stat ...

  8. bzoj 3992: [SDOI2015]序列统计【原根+生成函数+NTT+快速幂】

    还是没有理解透原根--题目提示其实挺明显的,M是质数,然后1<=x<=M-1 这种计数就容易想到生成函数,但是生成函数是加法,而这里是乘法,所以要想办法变成加法 首先因为0和任何数乘都是0 ...

  9. BZOJ.3992.[SDOI2015]序列统计(DP NTT 原根)

    题目链接 \(Description\) 给定\(n,m,x\)和集合\(S\).求\(\prod_{i=1}^na_i\equiv x\ (mod\ m)\)的方案数.其中\(a_i\in S\). ...

随机推荐

  1. Kotlint集合简单总结

    1.数组操作 var testArray = Array<>("s","ss")或者 = arrayOf("s","s ...

  2. py27使用redis

    1.安装redis pip install redis 转载请注明博客出处:http://www.cnblogs.com/cjh-notes/

  3. Nginx LVS HAProxy 对比

    一般对负载均衡的使用是随着网站规模的提升根据不同的阶段来使用不同的技术.具体的应用需求还得具体分析,如果是中小型的Web应用,比如日PV小于1000万,用Nginx就完全可以了:如果机器不少,可以用D ...

  4. 【UNIX环境高级编程】线程同步

    当多个线程共享相同的内存时,需要确保每个线程看到一致的数据视图.如果每个线程使用的变量都是其他线程不会读取和修改的,那么就不存在一致性问题.同样,如果变量是只读的也不会有一致性问题.但是,当一个线程可 ...

  5. linux下面Zookeeper的单机模式(standalone)

    1.下载 zk下载地址 http://mirrors.tuna.tsinghua.edu.cn/apache/zookeeper/ 我用的是http://mirrors.tuna.tsinghua.e ...

  6. CodeForces 860D Wizard's Tour

    题意 给出一张无向图,要求找出尽量多的长度为2的不同路径(边不可以重复使用,点可以重复使用) 分析 yzy:这是原题 http://www.lydsy.com/JudgeOnline/problem. ...

  7. FragmentTransaction add 和 replace 区别 转

    使用 FragmentTransaction 的时候,它提供了这样两个方法,一个 add , 一个 replace . add 和 replace 影响的只是界面,而控制回退的,是事务. public ...

  8. 【明哥报错簿】可以访问jsp但是访问不到controller

    此工程wms-web-enterprise启动之后,jsp页面可以访问,但是进不了controller.后来发现wms-consumer无法打包编译,在仓库m2里面发现此consumer.jar包为完 ...

  9. BGP与BGP机房 国内网络运营商的主流网关解决方案

    边界网关协议(BGP)是运行于 TCP 上的一种自治系统的路由协议. BGP 是唯一一个用来处理像因特网大小的网络的协议,也是唯一能够妥善处理好不相关路由域间的多路连接的协议. BGP 构建在 EGP ...

  10. Halum UVA - 11478(差分约束 + 二分最小值最大化)

    题意: 给定一个有向图,每条边都有一个权值,每次你可以选择一个结点v和一个整数d,把所有以v为终点的边的权值减小d,把所有以v为起点的边的权值增加d,最后要让所有边权的最小值非负且尽量大 两个特判 1 ...