spark应用执行机制分析

前段时间一直在编写指标代码,一直采用的是--deploy-mode client方式开发测试,因此执行没遇到什么问题,但是放到生产上采用--master yarn-cluster方式运行,那问题就开始陆续暴露出来了。因此写一篇文章分析并记录一下spark的几种运行方式。

1.spark应用的基本概念

spark运行模式分为:Local(本地idea上运行),Standalone,yarn,mesos等,这里主要是讨论一下在yarn上的运行方式,因为这也是最常见的生产方式。

根据spark Application的Driver Program是否在集群中运行,spark应用的运行方式又可以分为Cluster模式和Client模式。

spark应用涉及的一些基本概念:

1.mater:主要是控制、管理和监督整个spark集群

2.client:客户端,将用应用程序提交,记录着要业务运行逻辑和master通讯。

3.sparkContext:spark应用程序的入口,负责调度各个运算资源,协调各个work node上的Executor。主要是一些记录信息,记录谁运行的,运行的情况如何等。这也是为什么编程的时候必须要创建一个sparkContext的原因了。

4.Driver Program:每个应用的主要管理者,每个应用的老大,有人可能问不是有master么怎么还来一个?因为master是集群的老大,每个应用都归老大管,那老大疯了。因此driver负责具体事务运行并跟踪,运行Application的main()函数并创建sparkContext。

5.RDD:spark的核心数据结构,可以通过一系列算子进行操作,当Rdd遇到Action算子时,将之前的所有的算子形成一个有向无环图(DAG)。再在spark中转化成为job,提交到集群执行。一个app可以包含多个job

6.worker Node:集群的工作节点,可以运行Application代码的节点,接收mater的命令并且领取运行任务,同时汇报执行的进度和结果给master,节点上运行一个或者多个Executor进程。

7.exector:为application运行在workerNode上的一个进程,该进程负责运行Task,并且负责将数据存在内存或者磁盘上。每个application都会申请各自的Executor来处理任务。

spark应用(Application)执行过程中各个组件的概念:

1.Task(任务):RDD中的一个分区对应一个task,task是单个分区上最小的处理流程单元。

2.TaskSet(任务集):一组关联的,但相互之间没有Shuffle依赖关系的Task集合。

3.Stage(调度阶段):一个taskSet对应的调度阶段,每个job会根据RDD的宽依赖关系被切分很多Stage,每个stage都包含 一个TaskSet。

4.job(作业):由Action算子触发生成的由一个或者多个stage组成的计算作业。

5.application:用户编写的spark应用程序,由一个或者多个job组成,提交到spark之后,spark为application分派资源,将程序转换并执行。

6.DAGScheduler:根据job构建基于stage的DAG,并提交stage给TaskScheduler。

7.TaskScheduler:将Taskset提交给Worker Node集群运行并返回结果。

spark基本概念之间的关系

一个Application可以由一个或者多个job组成,一个job可以由一个或者多个stage组成,其中stage是根据宽窄依赖进行划分的,一个stage由一个taskset组成,一个TaskSET可以由一个到多个task组成。

应用提交与执行

spark使用driver进程负责应用的解析,切分Stage并且调度task到Executor执行,包含DAGscheduler等重要对象。Driver进程的运行地点有如下两种:

1.driver进程运行在client端,对应用进行管理监控。

2.Master节点指定某个Worker节点启动Driver进程,负责监控整个应用的执行。

driver运行在client

用户启动Client端,在client端启动Driver进程。在Driver中启动或实例化DAGScheduler等组件。

1.driver在client启动,做好准备工作,计划好任务的策略和方式(DAGScheduler)后向Master注册并申请运行Executor资源。

2.Worker向Master注册,Master通过指令让worker启动Executor。

3.worker收到指令后创建ExecutorRunner线程,进而ExecutorRunner线程启动executorBackend进程。

4.ExecutorBackend启动后,向client端driver进程内的SchedulerBackend注册,这样dirver进程就可以发现计算资源了。

5.Driver的DAGScheduler解析应用中的RDD DAG并生成相应的Stage,每个Stage包含的TaskSet通过TaskScheduler分配给Executor,在Exectutor内部启动线程池并行化执行Task,同事driver会密切注视,如果发现哪个execuctor执行效率低,会分配其他exeuctor顶替执行,观察谁的效率更高(推测执行)。

6.计划中的所有stage被执行完了之后,各个worker汇报给driver,同事释放资源,driver确定都做完了,就向master汇报。同时driver在client上,应用的执行进度clinet也知道了。

Driver运行在Worker节点

用户启动客户端,客户端提交应用程序给Master

1.Master调度应用,指定一个worker节点启动driver,即Scheduler-Backend。

2.worker接收到Master命令后创建driverRunner线程,在DriverRunner线程内创建SchedulerBackend进程,Dirver充当整个作业的主控进程。

3.Master指定其他Worker节点启动Exeuctor,此处流程和上面相似,worker创建ExecutorRunner线程,启动ExecutorBackend进程。

4.ExecutorBackend启动后,向client端driver进程内的SchedulerBackend注册,这样dirver进程就可以发现计算资源了。

5.Driver的DAGScheduler解析应用中的RDD DAG并生成相应的Stage,每个Stage包含的TaskSet通过TaskScheduler分配给Executor,在Exectutor内部启动线程池并行化执行Task,同事driver会密切注视,如果发现哪个execuctor执行效率低,会分配其他exeuctor顶替执行,观察谁的效率更高(推测执行)。

6.计划中的所有stage被执行完了之后,各个worker汇报给driver,同事释放资源,driver确定都做完了,就向master汇报。客户也会跳过master直接和drive通讯了解任务的执行进度。

spark学习(基础篇)--(第三节)Spark几种运行模式的更多相关文章

  1. Spark on YARN两种运行模式介绍

    本文出自:Spark on YARN两种运行模式介绍http://www.aboutyun.com/thread-12294-1-1.html(出处: about云开发)   问题导读 1.Spark ...

  2. Spark学习笔记1——第一个Spark程序:单词数统计

    Spark学习笔记1--第一个Spark程序:单词数统计 笔记摘抄自 [美] Holden Karau 等著的<Spark快速大数据分析> 添加依赖 通过 Maven 添加 Spark-c ...

  3. Docker虚拟化实战学习——基础篇(转)

    Docker虚拟化实战学习——基础篇 2018年05月26日 02:17:24 北纬34度停留 阅读数:773更多 个人分类: Docker   Docker虚拟化实战和企业案例演练 深入剖析虚拟化技 ...

  4. spark on mesos 两种运行模式

    spark on mesos 有粗粒度(coarse-grained)和细粒度(fine-grained)两种运行模式,细粒度模式在spark2.0后开始弃用. 细粒度模式 优点 spark默认运行的 ...

  5. Spark on YARN的两种运行模式

    Spark on YARN有两种运行模式,如下 1.yarn-cluster:适合于生产环境.        Spark的Driver运行在ApplicationMaster中,它负责向YARN Re ...

  6. 从零学习Fluter(八):Flutter的四种运行模式--Debug、Release、Profile和test以及命名规范

    从零学习Fluter(八):Flutter的四种运行模式--Debug.Release.Profile和test以及命名规范 好几天没有跟新我的这个系列文章,一是因为这两天我又在之前的基础上,重新认识 ...

  7. PHP语言学习之php-fpm 三种运行模式

    本文主要向大家介绍了PHP语言学习之php-fpm 三种运行模式,通过具体的内容向大家展示,希望对大家学习php语言有所帮助. php-fpm配置 配置文件:php-fpm.conf 开启慢日志功能的 ...

  8. [转]C++学习–基础篇(书籍推荐及分享)

    C++入门 语言技巧,性能优化 底层硬货 STL Boost 设计模式 算法篇 算起来,用C++已经有七八年时间,也有点可以分享的东西: 以下推荐的书籍大多有电子版.对于技术类书籍,电子版并不会带来一 ...

  9. Spark学习笔记1(初始spark

    1.什么是spark? spark是一个基于内存的,分布式的,大数据的计算框架,可以解决各种大数据领域的计算问题,提供了一站式的服务 Spark2009年诞生于伯克利大学的AMPLab实验室 2010 ...

随机推荐

  1. [转]VC++下使用ADO操作数据库

    (1).引入ADO类 1 2 3 #import "c:program filescommon filessystemadomsado15.dll" no_namespace re ...

  2. windows 系统重装之后怎么恢复oracle数据库

    今天单位的服务器系统进不去了,重做了系统,有重要的oracle数据,经理让我恢复一下oracle数据,试着尝试了一下 1.首先,将原来的ORACLE文件夹改名,原来的路径是D:/oracle.我暂时改 ...

  3. 简单脱壳教程笔记(8)---手脱EZIP壳

    本笔记是针对ximo早期发的脱壳基础视频教程,整理的笔记.本笔记用到的工具下载地址: http://download.csdn.net/detail/obuyiseng/9466056 EZIP壳 : ...

  4. Linux命令之乐--nmap

    Nmap是一款非常强大的实用工具,可用于:检测活在网络上的主机(主机发现)检测主机上开放的端口(端口发现或枚举)检测到相应的端口(服务发现)的软件和版本检测操作系统,硬件地址,以及软件版本检测脆弱性的 ...

  5. cocos中lua使用shader实例

    local prog = cc.GLProgram:create("res/shader/light2d.vsh","res/shader/light2d.fsh&quo ...

  6. Zabbix-3.0.3实现微信(WeChat)告警

    导读 Zabbix可以通过多种方式把告警信息发送到指定人,常用的有邮件,短信报警方式,但是越来越多的企业开始使用zabbix结合微信作为主要的告警方式,这样可以及时有效的把告警信息推送到接收人,方便告 ...

  7. 【IIS】模块 DLL C:\Windows\System32\inetsrv\authcert.dll 未能加载。返回的数据为错误信息。

    解决方案,check  IIS --Client Certificate Mapping Authentication installed?

  8. How to install sharepoint server 2010 sp2 in window 7 x64

    1. 下载 sharepoint server 2010 sp2 x64 2. 下载 前置环境插件 Microsoft FilterPack 2.0  (CD "C:\Program Fil ...

  9. C#全角半角转换输出解决方法

    Microsoft.VisualBasic 命名空间 Strings 模块 StrConv 函数就具有大写/小写.全角/半角.中文简体/繁体等转换功能,字符串转换应该说是VB.NET的强项,是这样的: ...

  10. FZU Moon Game(几何)

    Accept: 710    Submit: 2038 Time Limit: 1000 mSec    Memory Limit : 32768 KB  Problem Description Fa ...