题目:传送门

题目描述

整数划分是一个非常经典的数学问题。
所谓整数划分,是指把一个正整数n写成为n=m1+m2+...+mi的形式,其中mi为正整数,并且1<=mi<=n,此时,{m1, m2, ..., mi}为n的一个划分。如果{m1, m2, ..., mi}中的最大值不超过m,即max{m1, m2, ..., mi}<=m,那么我们称之为整数n的一个m划分。
现在给出你正整数n和m,请你输出n的m划分的数量。
例如,当n=4时,有5个划分,即{4}, {3,1}, {2,2}, {2,1,1}, {1,1,1,1}。
注意,4=1+3和4=3+1被认为是同一个划分。

输入

 输入文件以EOF结束。

每组数据占一行,有两个正整数n和m。(n,m<=50)

输出

 输出n的m划分的数量。

示例输入

4 4

示例输出

5

在比赛时通过做这题,明显发现了自己的不足,学过的知识理解的不透彻,明知道这题是神奇的换零钱的模板,但是没有推出来公式,还好我在模板里面找到了这题,1A。

代码如下:
#include <iostream>
#include <algorithm>
#include <math.h>
#include <map>
#include <queue>
#include <stack>
#define inf 0x3f3f3f3f
#include <stdio.h>
#include <string.h>
typedef long long ll;
#define mod 10000007
#define eps 1e-9
using namespace std;
int n,m,dp[];
int main()
{
while(scanf("%d%d",&n,&m)!=EOF)
{
m=min(m,n);
memset(dp,,sizeof(dp));
dp[]=;
for(int i=;i<=m;i++)
{
for(int j=i;j<=n;j++)
{
dp[j]+=dp[j-i];
}
}
printf("%d\n",dp[n]);
}
return ;
}
递归暴力的方法:

如下:

根据n和m的关系,考虑一下几种情况:

(一)当n=1时,无论m的值为多少(m>0),只有一种划分,即{1}。

(二)当m=1时,无论n的值为多少,只有一种划分,即n个1,{ 1,1,…,1}。

(三)当n=m时,根据划分中是否包含n,可以分为一下两种情况:

(1)划分中包含n的情况,只有一个,即{n}。

(2)划分中不包含n的情况,这时划分中最大的数字也一定比n小,即n的所有(n-1)划分。

因此f(n,n)=1+f(n,n-1)。

(四)当n<m时,由于划分中不可能出现负数,因此就相当于f(n,n)。

(五)当n>m时,根据划分中是否包含最大值m,可以分为以下两种情况:

(1)划分中包含m的情况,即{m, {x1,x2,…,xi}},其中{x1,x2,…,xi}的和为n-m,因此这种情况下为f(n-m,m)。

(2)划分中不包含m的情况,则划分中所有值都比m小,即n的(m-1)划分,个数为f(n,m-1)。

因此f(n,m)=f(n-m,m)+f(n,m-1)。


SDUT3145:Integer division 1(换零钱背包)的更多相关文章

  1. 51nod 1101 换零钱 【完全背包变形/无限件可取】

    1101 换零钱  基准时间限制:1 秒 空间限制:131072 KB 分值: 20 难度:3级算法题  收藏  关注 N元钱换为零钱,有多少不同的换法?币值包括1 2 5分,1 2 5角,1 2 5 ...

  2. 子集和问题(应用--换零钱)POJ2229:Sumsets

    我一直在纠结换零钱这一类型的题目,今天好好絮叨一下,可以说他是背包的应用,也可以说他是单纯的dp.暂且称他为dp吧. 先上一道模板题目. sdut2777: 小P的故事——神奇的换零钱 题目描述 已知 ...

  3. DP优化与换零钱问题

    1 当贪心不再起效的时候 对于换零钱问题,最简单也是性能最好的方法就是贪心算法.可是贪心算法一定要满足面值相邻两个零钱至少为二倍关系的前提条件.例如1,2,5,10,20……这样的零钱组应用贪心最简单 ...

  4. SICP 换零钱的迭代版本

    看到换零钱方式统计这里, 书中给出了递归的实现但没有给出迭代版本说要留给读者作为挑战, 既然说是作为挑战那肯定是能解决的,在想了一天无果之后最终在别人博客的帮助下终于实现了迭代的版本...也算是经历坎 ...

  5. 小P的故事——神奇的换零钱&&人活着系列之平方数

    http://acm.sdut.edu.cn/sdutoj/showproblem.php?pid=2777&cid=1219 这题不会,看了别人的代码 #include <iostre ...

  6. Why Python's Integer Division Floors ---- python int(6/-132)时答案不一致,向下取整

    leetcode150题中有一个步骤: int(6/-132) == 0 or ==-1? 在自己本地python3环境跑是int(6/-132) =0,但是提交的时候确实-1. 查找相关资料解惑: ...

  7. 51 Nod 1101 换零钱(动态规划好题)

    1101 换零钱  基准时间限制:1 秒 空间限制:131072 KB 分值: 20 难度:3级算法题  收藏  关注 N元钱换为零钱,有多少不同的换法?币值包括1 2 5分,1 2 5角,1 2 5 ...

  8. DeepFaceLab报错,integer division or modulo by zero

    DeepFaceLab的集成环境在众多换脸软件中是做的最好的.但是使用过程也会出现一些错误,主要的错误有两个,一个是你配置太低OOM了,主要体现显存太低.第二个是版本不对应.比如你原先用的cuda9. ...

  9. 51nod 1101换零钱(背包)

    N元钱换为零钱,有多少不同的换法?币值包括1 2 5分,1 2 5角,1 2 5 10 20 50 100元.   例如:5分钱换为零钱,有以下4种换法: 1.5个1分 2.1个2分3个1分 3.2个 ...

随机推荐

  1. android monkey app乱点测试

    Monkey是Android中的一个命令行工具 查看包名:查看电脑中某一位置的apk文件的包名:PC打开CMD-进入TMG目录-运行设备--查看包名aapt dump badging *.apk(ap ...

  2. 在CentOS中编译FFmpeg for Android静态库(含fdk aac,x264)

    本文可以编译出集成了x264和fdk_aac的库,而且支持neon 下载源码: https://github.com/mstorsjo/fdk-aac http://sourceforge.net/p ...

  3. Spring MVC学习之三:处理方法返回值的可选类型

    http://flyer2010.iteye.com/blog/1294400 ———————————————————————————————————————————————————————————— ...

  4. KMP + 求最小循环节 --- HUST 1010 - The Minimum Length

    The Minimum Length Problem's Link: http://acm.hust.edu.cn/problem/show/1010 Mean: 给你一个字符串,求这个字符串的最小循 ...

  5. php if语句判定ms查询是否为空

    $select_re_id=$cnx->query("select count(*) c from Yid where pid='".$pid."' and gid ...

  6. Servlet和JSP规范及版本对应关系

    JSR 53: JavaTM Servlet 2.3 and JavaServer PagesTM 1.2 JSR 154: JavaTM Servlet 2.4 JSR 154: JavaTM Se ...

  7. 【BZOJ】1676: [Usaco2005 Feb]Feed Accounting 饲料计算(差分)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1676 太水的一题了.. 差分直接搞. #include <cstdio> #includ ...

  8. 【BZOJ】1673: [Usaco2005 Dec]Scales 天平(dfs背包)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1673 bzoj翻译过来的c<=230不忍吐槽......................... ...

  9. ThinkPHP项目笔记之函数篇

    说到函数,可能有人会想:框架的C(控制器)通牌都是函数构成的,没有必要讲吧. 当然,我要说的是,公共函数:function.php,该文件就是为了开发一下功能准备的,比方说,某个功能,a地方可用,b地 ...

  10. 线程本地变更,即ThreadLocal-->Spring事务管理

    我们知道Spring通过各种模板类降低了开发者使用各种数据持久技术的难度.这些模板类都是线程安全的,也就是说,多个DAO可以复用同一个模板实例而不会发生冲突.我们使用模板类访问底层数据,根据持久化技术 ...