Problem A - No Tipping

As Archimedes famously observed, if you put an object on a lever arm, it will exert a twisting force around the lever's fulcrum. This twisting is called torque and is equal to the object's weight multiplied by its distance from the fulcrum (the angle of the lever also comes in, but that does not concern us here). If the object is to the left of the fulcrum, the direction of the torque is counterclockwise; if the object is to the right, the direction is clockwise. To compute the torque around a support, simply sum all the torques of the individual objects on the lever.

The challenge is to keep the lever balanced while adjusting the objects on it. Assume you have a straight, evenly weighted board, 20 meters long and weighing three kilograms. The middle of the board is the center of mass, and we will call that position 0. So the possible positions on the board range from -10 (the left end) to +10 (the right end). The board is supported at positions -1.5 and +1.5 by two equal fulcrums, both two meters tall and standing on a flat floor. On the board are six packages, at positions -8, -4, -3, 2, 5 and 8, having weights of 4, 10, 10, 4, 7 and 8 kilograms, respectively as in the picture below.

Your job is to remove the packages one at a time in such a way that the board rests on both supports without tipping. The board would tip if the net torque around the left fulcrum (resulting from the weights of the packages and the board itself) were counterclockwise or if the net torque around the right fulcrum were clockwise. A possible solution to this problem is: first remove the package at position -4, then the package at 8, then -8, then 5, then -3 and finally 2.

You are to write a program which solves problems like the one described above. The input contains multiple cases. Each case starts with three integers: the length of the board (in meters, at least 3), the weight of the board (in kilograms) and n the number of packages on the board (n <= 20). The board is supported at positions -1.5 and +1.5 by two equal fulcrums, both two meters tall and standing on a flat floor. The following n lines contain two integers each: the position of a package on board (in meters measured from the center, negative means to the left) and the weight of the package (in kilograms). A line containing three 0's ends the input. For each case you are to output the number of the case in the format shown below and then n lines each containing 2 integers, the position of a package and its weight, in an order in which the packages can be removed without causing the board to tip. If there is no solution for a case, output a single line Impossible. There is no solution if in the initial configuration the board is not balanced.

Sample input

20 3 6
-8 4
-4 10
-3 10
2 4
5 7
8 8
20 3 15
1 10
8 5
-6 8
5 9
-8 4
8 10
-3 10
-4 5
2 9
-2 2
3 3
-3 2
5 1
-6 1
2 5
30 10 2
-8 100
9 91
0 0 0

Possible Output for sample input

Case 1:
-4 10
8 8
-8 4
5 7
-3 10
2 4
Case 2:
1 10
8 5
-6 8
5 9
-8 4
8 10
-3 10
-4 5
2 9
-2 2
3 3
-3 2
5 1
-6 1
2 5
Case 3:
Impossible

题意:给定一块木板长度l,重量w,和上面放了n个木块,下面n行为n个木块的信息,每个木块有放置的位置,和重量。现在已知木板两个支点为-1.5和1.5位置。要求出一个把木块拿下来的顺序。保证木板一直是平衡的。输出这个顺序,如果做不到就输出Impossible。。

思路:题目中有两个支点根据物理学,可以证明,当左支点左边的力距大于左支点右边的力距时,和右支点右边的力距大于右支点左边的力距时,会失去平衡。还有如果木块是放在-1.5 到 1.5之间,那么木块只会使木板更平衡。所以我们可以用贪心的思想。把中间的木块最后拿掉。

接着我们把左边的木块和右边的木块分成两堆。进行力距从小到大的排序。然后把思路反过来想,可以转换成,把木块一个个放上去,仍然保持平衡。这时候。我们从力距小的开始放,可以使得木板最不可能失去平衡。然后之前分成两堆是因为。木块一般是交替放置的。这样左边往上不符合,就放右边,反之,当右边不符合,就放左边。这样贪心可极大减少时间。

直到木块全部放置完毕就结束。

#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <math.h>
using namespace std; struct M {
int l;
int w;
double ll;
double lz;
double rr;
double rz;
} ml[35], mr[35]; bool cmpl(M a, M b) {
return a.ll < b.ll;
}
bool cmpr(M a, M b) {
return a.rr < b.rr;
}
int numm;
int numl, numr;
int l, w, n;
double ll, lz, rr, rz;
int a, b;
int judge;
int out[35][2]; void dfs(double ll, double lz, double rr, double rz, int num, int numll, int numrr) {
if (judge)
return;
if (ll > lz || rr > rz)
return;
if (num == n) {
judge = 1;
return;
}
out[num][0] = ml[numll].l;
out[num][1] = ml[numll].w;
if (numll != numl)
dfs(ll + ml[numll].ll, lz, rr, rz + ml[numll].rz, num + 1, numll + 1, numrr);
if (judge)
return;
out[num][0] = mr[numrr].l;
out[num][1] = mr[numrr].w;
if (numrr != numr)
dfs(ll, lz + mr[numrr].lz, rr + mr[numrr].rr, rz, num + 1, numll, numrr + 1);
}
int main()
{
int t = 1;
while (scanf("%d%d%d", &l, &w, &n) != EOF && l && w && n) {
memset(ml, 0, sizeof(ml));
memset(mr, 0, sizeof(mr));
memset(out, 0, sizeof(out));
numl = numr = numm = 0;
judge = 0;
ll = rr = (l - 3) * (l - 3) * w / (4.0 * l);
lz = rz = (l + 3) * (l + 3) * w / (4.0 * l);
l *= 2;
for (int i = 0; i < n; i ++) {
scanf("%d%d", &a, &b);
a *= 2;
if (abs(a) <= 3) {
out[numm][0] = a / 2;
out[numm++][1] = b;
if (a < 0) {
lz += ((3 - abs(a)) * b) * 1.0;
rz += ((3 + abs(a)) * b) * 1.0;
}
else {
lz += ((3 + abs(a)) * b) * 1.0;
rz += ((3 - abs(a)) * b) * 1.0;
}
}
else {
if (a < 0) {
ml[numl].l = a / 2;
ml[numl].w = b;
ml[numl].ll = ((abs(a) - 3) * b) * 1.0;
ml[numl ++].rz = ((abs(a) + 3) * b) * 1.0;
}
if (a > 0) {
mr[numr].l = a / 2;
mr[numr].w = b;
mr[numr].rr = ((abs(a) - 3) * b) * 1.0;
mr[numr ++].lz = ((abs(a) + 3) * b) * 1.0;
}
}
}
sort(ml, ml + numl, cmpl);
sort(mr, mr + numr, cmpr);
dfs(ll, lz, rr, rz, numm, 0, 0);
printf("Case %d:\n", t ++);
if (judge) {
for (int i = n - 1; i >= 0; i --)
printf("%d %d\n", out[i][0], out[i][1]);
}
else
printf("Impossible\n");
}
return 0;
}

UVA 10123 No Tipping (物理+贪心+DFS剪枝)的更多相关文章

  1. uva :10123 - No Tipping(dfs + 几何力矩 )

    option=com_onlinejudge&Itemid=8&page=show_problem&category=109&problem=1064&mosm ...

  2. uva 10123 - No Tipping dp 记忆化搜索

    这题的题意是 在双脚天平上有N块东西,依次从上面取走一些,最后使得这个天平保持平衡! 解题: 逆着来依次放入,如果可行那就可以,记得得有木板自身的重量. /********************** ...

  3. 【UVa】11882 Biggest Number(dfs+剪枝)

    题目 题目     分析 典型搜索,考虑剪枝. 统计一下联通分量. 1.本位置能够达到所有的点的数量加上本已有的点,还没有之前的结果长,直接返回. 2.当本位置能够达到所有的点的数量加上本已有的点与之 ...

  4. Sticks(UVA - 307)【DFS+剪枝】

    Sticks(UVA - 307) 题目链接 算法 DFS+剪枝 1.这道题题意就是说原本有一些等长的木棍,后来把它们切割,切割成一个个最长为50单位长度的小木棍,现在想让你把它们组合成一个个等长的大 ...

  5. hdu 5887 Herbs Gathering (dfs+剪枝 or 超大01背包)

    题目链接:http://acm.split.hdu.edu.cn/showproblem.php?pid=5887 题解:这题一看像是背包但是显然背包容量太大了所以可以考虑用dfs+剪枝,贪心得到的不 ...

  6. AcWing:165. 小猫爬山(dfs + 剪枝)

    翰翰和达达饲养了N只小猫,这天,小猫们要去爬山. 经历了千辛万苦,小猫们终于爬上了山顶,但是疲倦的它们再也不想徒步走下山了(呜咕>_<). 翰翰和达达只好花钱让它们坐索道下山. 索道上的缆 ...

  7. *HDU1455 DFS剪枝

    Sticks Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Subm ...

  8. POJ 3009 DFS+剪枝

    POJ3009 DFS+剪枝 原题: Curling 2.0 Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 16280 Acce ...

  9. poj 1724:ROADS(DFS + 剪枝)

    ROADS Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 10777   Accepted: 3961 Descriptio ...

随机推荐

  1. ZOJ 3954 Seven-Segment Display

    二分图匹配. 先检查每个数字$1$的个数是否满足条件,不满足直接就是无解.剩下的情况可以建立二分图,如果现在的某一列可以对应于原图的某一列,那么建边.如果二分图的最大匹配是$7$,则有解,否则误解. ...

  2. Python函数系列-迭代器,生成器

    一 迭代器 一 迭代的概念 #迭代器即迭代的工具,那什么是迭代呢?#迭代是一个重复的过程,每次重复即一次迭代,并且每次迭代的结果都是下一次迭代的初始值 while True: #只是单纯地重复,因而不 ...

  3. 利用gmpy2破解rsa

    gmpy2的相关文档: https://gmpy2.readthedocs.io/en/latest/ ================ 题目: 来自实验吧的rsarsa:http://www.shi ...

  4. FastReport.Net使用:[5]主从表

    主从报表在日常生活中也很常用,譬如订单,班级学生报表等.下面以学生选课为例,以学生为主表,选课为从表做一学生选课报表. 绘制简单主从报表 1.绘制报表标题. 2.为数据区添加从表. ●可以直接右键数据 ...

  5. web项目启动执行方法

    近期在项目中需要将用户在web启动时就查询出来,当作缓存使用. 一.首先需要实现 ServletContextListener 接口 public class UserCacheUtils imple ...

  6. codevs 2181 田忌赛马

    2181 田忌赛马 时间限制: 1 s 空间限制: 32000 KB 题目等级 : 钻石 Diamond   题目描述 Description 中国古代的历史故事“田忌赛马”是为大家所熟知的.话说齐王 ...

  7. [SDOI2014]数数 --- AC自动机 + 数位DP

    [SDOI2014]数数 题目描述: 我们称一个正整数N是幸运数,当且仅当它的十进制表示中不包含数字串集合S中任意一个元素作为其子串. 例如当S=(22,333,0233)时,233是幸运数,2333 ...

  8. HDU1429 胜利大逃亡 状压bfs

    http://acm.hdu.edu.cn/viewcode.php?rid=22225154 因为总共a-j有10种钥匙,所以可以把有没有钥匙的状态压到一个int数里,然后dfs. 昨天状态特别不好 ...

  9. Hash表及hash算法的分析

    Hash表中的一些原理/概念,及根据这些原理/概念: 一.       Hash表概念 二.       Hash构造函数的方法,及适用范围 三.       Hash处理冲突方法,各自特征 四.   ...

  10. Codeforces Round #304 (Div. 2) B. Soldier and Badges 水题

    B. Soldier and Badges Time Limit: 20 Sec  Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/54 ...