Problem A - No Tipping

As Archimedes famously observed, if you put an object on a lever arm, it will exert a twisting force around the lever's fulcrum. This twisting is called torque and is equal to the object's weight multiplied by its distance from the fulcrum (the angle of the lever also comes in, but that does not concern us here). If the object is to the left of the fulcrum, the direction of the torque is counterclockwise; if the object is to the right, the direction is clockwise. To compute the torque around a support, simply sum all the torques of the individual objects on the lever.

The challenge is to keep the lever balanced while adjusting the objects on it. Assume you have a straight, evenly weighted board, 20 meters long and weighing three kilograms. The middle of the board is the center of mass, and we will call that position 0. So the possible positions on the board range from -10 (the left end) to +10 (the right end). The board is supported at positions -1.5 and +1.5 by two equal fulcrums, both two meters tall and standing on a flat floor. On the board are six packages, at positions -8, -4, -3, 2, 5 and 8, having weights of 4, 10, 10, 4, 7 and 8 kilograms, respectively as in the picture below.

Your job is to remove the packages one at a time in such a way that the board rests on both supports without tipping. The board would tip if the net torque around the left fulcrum (resulting from the weights of the packages and the board itself) were counterclockwise or if the net torque around the right fulcrum were clockwise. A possible solution to this problem is: first remove the package at position -4, then the package at 8, then -8, then 5, then -3 and finally 2.

You are to write a program which solves problems like the one described above. The input contains multiple cases. Each case starts with three integers: the length of the board (in meters, at least 3), the weight of the board (in kilograms) and n the number of packages on the board (n <= 20). The board is supported at positions -1.5 and +1.5 by two equal fulcrums, both two meters tall and standing on a flat floor. The following n lines contain two integers each: the position of a package on board (in meters measured from the center, negative means to the left) and the weight of the package (in kilograms). A line containing three 0's ends the input. For each case you are to output the number of the case in the format shown below and then n lines each containing 2 integers, the position of a package and its weight, in an order in which the packages can be removed without causing the board to tip. If there is no solution for a case, output a single line Impossible. There is no solution if in the initial configuration the board is not balanced.

Sample input

20 3 6
-8 4
-4 10
-3 10
2 4
5 7
8 8
20 3 15
1 10
8 5
-6 8
5 9
-8 4
8 10
-3 10
-4 5
2 9
-2 2
3 3
-3 2
5 1
-6 1
2 5
30 10 2
-8 100
9 91
0 0 0

Possible Output for sample input

Case 1:
-4 10
8 8
-8 4
5 7
-3 10
2 4
Case 2:
1 10
8 5
-6 8
5 9
-8 4
8 10
-3 10
-4 5
2 9
-2 2
3 3
-3 2
5 1
-6 1
2 5
Case 3:
Impossible

题意:给定一块木板长度l,重量w,和上面放了n个木块,下面n行为n个木块的信息,每个木块有放置的位置,和重量。现在已知木板两个支点为-1.5和1.5位置。要求出一个把木块拿下来的顺序。保证木板一直是平衡的。输出这个顺序,如果做不到就输出Impossible。。

思路:题目中有两个支点根据物理学,可以证明,当左支点左边的力距大于左支点右边的力距时,和右支点右边的力距大于右支点左边的力距时,会失去平衡。还有如果木块是放在-1.5 到 1.5之间,那么木块只会使木板更平衡。所以我们可以用贪心的思想。把中间的木块最后拿掉。

接着我们把左边的木块和右边的木块分成两堆。进行力距从小到大的排序。然后把思路反过来想,可以转换成,把木块一个个放上去,仍然保持平衡。这时候。我们从力距小的开始放,可以使得木板最不可能失去平衡。然后之前分成两堆是因为。木块一般是交替放置的。这样左边往上不符合,就放右边,反之,当右边不符合,就放左边。这样贪心可极大减少时间。

直到木块全部放置完毕就结束。

#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <math.h>
using namespace std; struct M {
int l;
int w;
double ll;
double lz;
double rr;
double rz;
} ml[35], mr[35]; bool cmpl(M a, M b) {
return a.ll < b.ll;
}
bool cmpr(M a, M b) {
return a.rr < b.rr;
}
int numm;
int numl, numr;
int l, w, n;
double ll, lz, rr, rz;
int a, b;
int judge;
int out[35][2]; void dfs(double ll, double lz, double rr, double rz, int num, int numll, int numrr) {
if (judge)
return;
if (ll > lz || rr > rz)
return;
if (num == n) {
judge = 1;
return;
}
out[num][0] = ml[numll].l;
out[num][1] = ml[numll].w;
if (numll != numl)
dfs(ll + ml[numll].ll, lz, rr, rz + ml[numll].rz, num + 1, numll + 1, numrr);
if (judge)
return;
out[num][0] = mr[numrr].l;
out[num][1] = mr[numrr].w;
if (numrr != numr)
dfs(ll, lz + mr[numrr].lz, rr + mr[numrr].rr, rz, num + 1, numll, numrr + 1);
}
int main()
{
int t = 1;
while (scanf("%d%d%d", &l, &w, &n) != EOF && l && w && n) {
memset(ml, 0, sizeof(ml));
memset(mr, 0, sizeof(mr));
memset(out, 0, sizeof(out));
numl = numr = numm = 0;
judge = 0;
ll = rr = (l - 3) * (l - 3) * w / (4.0 * l);
lz = rz = (l + 3) * (l + 3) * w / (4.0 * l);
l *= 2;
for (int i = 0; i < n; i ++) {
scanf("%d%d", &a, &b);
a *= 2;
if (abs(a) <= 3) {
out[numm][0] = a / 2;
out[numm++][1] = b;
if (a < 0) {
lz += ((3 - abs(a)) * b) * 1.0;
rz += ((3 + abs(a)) * b) * 1.0;
}
else {
lz += ((3 + abs(a)) * b) * 1.0;
rz += ((3 - abs(a)) * b) * 1.0;
}
}
else {
if (a < 0) {
ml[numl].l = a / 2;
ml[numl].w = b;
ml[numl].ll = ((abs(a) - 3) * b) * 1.0;
ml[numl ++].rz = ((abs(a) + 3) * b) * 1.0;
}
if (a > 0) {
mr[numr].l = a / 2;
mr[numr].w = b;
mr[numr].rr = ((abs(a) - 3) * b) * 1.0;
mr[numr ++].lz = ((abs(a) + 3) * b) * 1.0;
}
}
}
sort(ml, ml + numl, cmpl);
sort(mr, mr + numr, cmpr);
dfs(ll, lz, rr, rz, numm, 0, 0);
printf("Case %d:\n", t ++);
if (judge) {
for (int i = n - 1; i >= 0; i --)
printf("%d %d\n", out[i][0], out[i][1]);
}
else
printf("Impossible\n");
}
return 0;
}

UVA 10123 No Tipping (物理+贪心+DFS剪枝)的更多相关文章

  1. uva :10123 - No Tipping(dfs + 几何力矩 )

    option=com_onlinejudge&Itemid=8&page=show_problem&category=109&problem=1064&mosm ...

  2. uva 10123 - No Tipping dp 记忆化搜索

    这题的题意是 在双脚天平上有N块东西,依次从上面取走一些,最后使得这个天平保持平衡! 解题: 逆着来依次放入,如果可行那就可以,记得得有木板自身的重量. /********************** ...

  3. 【UVa】11882 Biggest Number(dfs+剪枝)

    题目 题目     分析 典型搜索,考虑剪枝. 统计一下联通分量. 1.本位置能够达到所有的点的数量加上本已有的点,还没有之前的结果长,直接返回. 2.当本位置能够达到所有的点的数量加上本已有的点与之 ...

  4. Sticks(UVA - 307)【DFS+剪枝】

    Sticks(UVA - 307) 题目链接 算法 DFS+剪枝 1.这道题题意就是说原本有一些等长的木棍,后来把它们切割,切割成一个个最长为50单位长度的小木棍,现在想让你把它们组合成一个个等长的大 ...

  5. hdu 5887 Herbs Gathering (dfs+剪枝 or 超大01背包)

    题目链接:http://acm.split.hdu.edu.cn/showproblem.php?pid=5887 题解:这题一看像是背包但是显然背包容量太大了所以可以考虑用dfs+剪枝,贪心得到的不 ...

  6. AcWing:165. 小猫爬山(dfs + 剪枝)

    翰翰和达达饲养了N只小猫,这天,小猫们要去爬山. 经历了千辛万苦,小猫们终于爬上了山顶,但是疲倦的它们再也不想徒步走下山了(呜咕>_<). 翰翰和达达只好花钱让它们坐索道下山. 索道上的缆 ...

  7. *HDU1455 DFS剪枝

    Sticks Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Subm ...

  8. POJ 3009 DFS+剪枝

    POJ3009 DFS+剪枝 原题: Curling 2.0 Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 16280 Acce ...

  9. poj 1724:ROADS(DFS + 剪枝)

    ROADS Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 10777   Accepted: 3961 Descriptio ...

随机推荐

  1. [实战]MVC5+EF6+MySql企业网盘实战(16)——逻辑重构3

    写在前面 本篇文章将新建文件夹的逻辑也进行一下修改. 系列文章 [EF]vs15+ef6+mysql code first方式 [实战]MVC5+EF6+MySql企业网盘实战(1) [实战]MVC5 ...

  2. live555例子程序编译连接时发现函数未定义问题

    1 调整连接库的顺序. 2 更新头文件与所用的库一致

  3. React学习笔记2017-12-31

    课程:https://coding.imooc.com/class/chapter/150.html 第一章:介绍 第二章:知识储备 React开发环境 1.安装Nodejs 2.安装Visual S ...

  4. Java SHAA加密

    package com.util; import java.security.MessageDigest; /** * 采用SHAA加密 */ public class SHAUtil { /*** ...

  5. 《java虚拟机》----虚拟机字节码执行引擎

    No1: 物理机的执行引擎是直接建立在处理器.硬件.指令集合操作系统层面上的,而虚拟机的执行引擎则是由自己实现的,因此可以自行制定指令集与执行引擎的结构体系,并且能够执行那些不被硬件直接支持的指令集格 ...

  6. 洛谷P4139 上帝与集合的正确用法 [扩展欧拉定理]

    题目传送门 上帝与集合的正确用法 题目描述 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做“元”. 第二天, 上帝创造了一个新的元素,称作“α”. ...

  7. CPPUNIT_TEST

    (1) CPPUNIT_ASSERT(condition):判断condition的值是否为真,如果为假则生成错误信息. (2)CPPUNIT_ASSERT_MESSAGE(message, cond ...

  8. Java常用工具类之Excel导出

    package com.wazn.learn.util; import java.util.List; import java.util.Map; import org.apache.poi.hssf ...

  9. Python开发基础-Day29多线程

    概念 进程:进程就是一个程序在一个数据集上的一次动态执行过程 程序:代码 数据集:程序执行过程中需要的资源 进程控制块:完成状态保存的单元 线程:线程是寄托在进程之上,为了提高系统的并发性 线程是进程 ...

  10. openstack newton linuxbridge 改成 ovs

    最近搭建了一个all in one 的 openstack newton 版,安装官方文档做用的是linuxbridge.已经老版玩的时候都是用的ovs,趁比较闲的时候也将N版改造一下 官方文档 ht ...