Description

算法复杂度一般分为:时间复杂度、空间复杂度、编程复杂度。 这三个复杂度本身是矛盾体,不能一味地追求降低某一复杂度,否则会带来其他复杂度的增加。在权衡各方面的情况下,降低时间复杂度成为本课程学习的重点之一。 请计算下面几个程序段的复杂程度,分别用1、logn、n、nlogn、n^2、n^3或2^n来表示

程序片段1:
x=x+1;
程序片段2:
for(k=1;k<=n;k++)
{
x=x+1;
}

程序片段3: for(k=1,t=1;k<=n;k++) { t=t*2; for(j=1;j<=t;j++) x=x+j; } 程序片段4: for(k=1;k<=n;k++) { for(j=1;j<=k;j++) x=x+j; } 程序片段5: m=0; for(k=1,t=1;k<=n;k++) { t=t*2; for(j=t;j<=n;j++) m++; } 程序片段6: m=0; for(k=1;k<=n;k++) { for(j=1;j<=n;j++) m++; } 程序片段7: m=0; for(k=1;k<=n;k++) { for(j=1;j<=n;j++) for(i=1;i<=n;i++) m++; }

Input

多组测试数据,首先在第一行输入整数T表示提问次数 然后是n行,每行是1个整数,表示程序片段号

Output

对于每次提问,在1行输出对应程序片段对应的复杂程度(注意必须按前面提示的输出,注意大小写

Sample Input

2
1
2

Sample Output

1
n
#include<stdio.h>
int main(void)
{
int t,m;
while(scanf("%d",&t)!=EOF)
{
while(t--)
{
scanf("%d",&m);
if(m==)
printf("1\n");
if(m==)
printf("n\n");
if(m==)
printf("2^n\n");
if(m==)
printf("n^2\n");
if(m==)
printf("nlogn\n");
if(m==)
printf("n^2\n");
if(m==)
printf("n^3\n");
}
}
return ;
}
#include <stdio.h>
int main()
{
int m,n;
while(scanf("%d",&n)!=EOF)
while(n--)
{
scanf("%d",&m);
switch(m)
{
case :printf("1\n");break;
case :printf("n\n");break;
case :printf("2^n\n");break;
case :printf("n^2\n");break;
case :printf("nlogn\n");break;
case :printf("n^2\n");break;
case :printf("n^3\n");break;
}
}
return ;
}

Problem B: 深入浅出学算法003-计算复杂度的更多相关文章

  1. Problem E: 深入浅出学算法019-求n的阶乘

    Problem E: 深入浅出学算法019-求n的阶乘 Time Limit: 1 Sec  Memory Limit: 64 MBSubmit: 5077  Solved: 3148 Descrip ...

  2. Problem D: 深入浅出学算法005-数7

    Description 逢年过节,三五好友,相约小聚,酒过三旬,围桌数七. “数七”是一个酒桌上玩的小游戏.就是按照顺序,某人报一个10以下的数字,然后后面的人依次在原来的数字上加1,并喊出来,当然如 ...

  3. Problem H: 深入浅出学算法009-韩信点兵

    Description 秦朝末年,楚汉相争.有一次,韩信将1500名将士与楚王大将李锋交战.苦战一场,楚军不敌,败退回营,汉军也死伤四五百人,于是,韩信整顿兵马也返回大本营.当行至一山坡,忽有后军来报 ...

  4. Problem G: 深入浅出学算法008-求佩尔方程的解

    Description 求关于x y的二次不定方程的解 x2-ny2=1 Input 多组输入数据,先输入组数T 然后输入正整数n(n<=100) Output 对于每组数据输出一行,求y< ...

  5. Problem F: 深入浅出学算法007-统计求和

    Description 求含有数字a且不能被a整除的4位整数的个数,并求这些整数的和 Input 多组测试数据,先输入整数T表示组数然后每组输入1个整数a(1<=a<=9) Output ...

  6. Problem E: 深入浅出学算法006-求不定方程的所有解

    Description 现有一方程ax+by=c,其中系数a.b.c均为整数,求符合条件的所有正整数解,要求按x由小到大排列,其中a b c 均为不大于1000的正整数 Input 多组测试数据,第一 ...

  7. Problem C: 深入浅出学算法004-求多个数的最小公倍数

    Description 求n个整数的最小公倍数 Input 多组测试数据,先输入整数T表示组数 然后每行先输入1个整数n,后面输入n个整数k1 k2...kn Output 求k1 k2 ...kn的 ...

  8. Problem A: 深入浅出学算法002-n个1

    Description 由n个1组成的整数能被K(K<10000)整除,n至少为多少? Input 多组测试数据,第一行输入整数T,表示组数 然后是T行,每行输入1个整数代表K Output 对 ...

  9. Problem A: 深入浅出学算法022-汉诺塔问题II

    #include<stdio.h> void hanio(int n,char a,char b,char c) { ) printf("%c->%c\n",a, ...

随机推荐

  1. 【转】CentOS7 yum方式配置LAMP环境

    采用Yum方式搭建: Apache+Mysql+PHP环境 原文地址: http://www.cnblogs.com/zutbaz/p/4420791.html 1.安装Apache yum inst ...

  2. MSSQL 详解SQL Server连接(内连接、外连接、交叉连接)

    在查询多个表时,我们经常会用“连接查询”.连接是关系数据库模型的主要特点,也是它区别于其它类型数据库管理系统的一个标志. 什么是连接查询呢? 概念:根据两个表或多个表的列之间的关系,从这些表中查询数据 ...

  3. WordPress浏览数插件的安装使用

    插件安装很容易,但是和大多插件都一样,安装后需要调用代码才能显示,我安装后,也调用了.但是就是不显示,后来才发现,我从其他地方复制过来的代码,函数是中文的单引号,这样致使函数失效,注意代码中参数的引号 ...

  4. python并发编程之gevent协程(四)

    协程的含义就不再提,在py2和py3的早期版本中,python协程的主流实现方法是使用gevent模块.由于协程对于操作系统是无感知的,所以其切换需要程序员自己去完成. 系列文章 python并发编程 ...

  5. python之微信公众号开发(基本配置和校验)

    前言 最近有微信公众号开发的业务,以前没有用python做过微信公众号开发,记录一下自己的学习和开发历程,共勉! 公众号类型 订阅号 普通订阅号 认证订阅号 服务号 普通服务号 认证服务号 服务方式 ...

  6. 解读Linux命令格式(转)

    解读Linux命令格式   环境 Linux HA5-139JK 2.6.18-164.el5 #1 SMP Tue Aug 18 15:51:48 EDT 2009 x86_64 x86_64 x8 ...

  7. photoshop 安装问题

    问题:“安装程序检测到计算机重新启动操作可能处于挂起状态.建议您退出安装程序,重新启动并重试.” 解决: 1.运行 regedit 打开注册表编辑器. 2.依次展开HKEY_LOCAL_MACHINE ...

  8. 非交互式shell脚本案例-实现自主从oracle数据库获取相关数据,并在制定目录生成相应规则的文件脚本

    get_task_id 脚本内容 #!/usr/bin/expect#配置登陆数据库的端口set port 22#配置登陆数据库的ip地址set oracleip 10.0.4.41#配置数据库实例名 ...

  9. Netty并发优化之ExecutionHandler

    上文<Netty框架入门>说到:如果业务处理handler耗时长,将严重影响可支持的并发数. 针对这一问题,经过学习,发现了可以使用ExecutionHandler来优化. 先来回顾一下没 ...

  10. Freemaker语法

    包含文件 <a href="${latestProduct.url}">${latestProduct.name}</a> 基本语法 ${...}:Free ...