卡特兰数 codevs 1086 栈
栈是计算机中经典的数据结构,简单的说,栈就是限制在一端进行插入删除操作的线性表。
栈有两种最重要的操作,即pop(从栈顶弹出一个元素)和push(将一个元素进栈)。
栈的重要性不言自明,任何一门数据结构的课程都会介绍栈。宁宁同学在复习栈的基本概念时,想到了一个书上没有讲过的问题,而他自己无法给出答案,所以需要你的帮忙
宁宁考虑的是这样一个问题:一个操作数序列,从1,2,一直到n(图示为1到3的情况),栈A的深度大于n。
现在可以进行两种操作,
1.将一个数,从操作数序列的头端移到栈的头端(对应数据结构栈的push操作)
2. 将一个数,从栈的头端移到输出序列的尾端(对应数据结构栈的pop操作)
使用这两种操作,由一个操作数序列就可以得到一系列的输出序列,下图所示为由1 2 3生成序列2 3 1的过程。(原始状态如上图所示) 。
你的程序将对给定的n,计算并输出由操作数序列1,2,…,n经过操作可能得到的输出序列的总数。
输入文件只含一个整数n(1≤n≤18)
输出文件只有一行,即可能输出序列的总数目
3
5
#include<iostream>
long long f[];
using namespace std;
int main()
{
int n;
cin>>n;
f[]=;f[]=;
for(int i=;i<=n;++i)
{
for(int j=;j<=i-;j++)
f[i]+=f[j]*f[i-j-];
}
cout<<f[n];
return ;
}
卡特兰数 codevs 1086 栈的更多相关文章
- codevs 1086 栈 2003年NOIP全国联赛普及组
题目描述 Description 栈是计算机中经典的数据结构,简单的说,栈就是限制在一端进行插入删除操作的线性表. 栈有两种最重要的操作,即pop(从栈顶弹出一个元素)和push(将一个元素进栈). ...
- AC日记——codevs 1086 栈 (卡特兰数)
题目描述 Description 栈是计算机中经典的数据结构,简单的说,栈就是限制在一端进行插入删除操作的线性表. 栈有两种最重要的操作,即pop(从栈顶弹出一个元素)和push(将一个元素进栈). ...
- codevs 1086 栈(Catalan数)
题目描述 Description 栈是计算机中经典的数据结构,简单的说,栈就是限制在一端进行插入删除操作的线性表. 栈有两种最重要的操作,即pop(从栈顶弹出一个元素)和push(将一个元素进栈). ...
- NOIP2003pj栈[卡特兰数]
题目背景 栈是计算机中经典的数据结构,简单的说,栈就是限制在一端进行插入删除操作的线性表. 栈有两种最重要的操作,即pop(从栈顶弹出一个元素)和push(将一个元素进栈). 栈的重要性不言自明,任何 ...
- 卡特兰数 BZOJ3907 网格 NOIP2003 栈
卡特兰数 卡特兰数2 卡特兰数:主要是求排列组合问题 1:括号化矩阵连乘,问多少种方案 2:走方格,不能过对角线,问多少种方案 3:凸边型,划分成三角形 4:1到n的序列进栈,有多少种出栈方案 NOI ...
- 出栈顺序 与 卡特兰数(Catalan)的关系
一,问题描述 给定一个以字符串形式表示的入栈序列,请求出一共有多少种可能的出栈顺序?如何输出所有可能的出栈序列? 比如入栈序列为:1 2 3 ,则出栈序列一共有五种,分别如下:1 2 3.1 3 2 ...
- 洛谷 p1044 栈 【Catalan(卡特兰数)】【经典题】
题目链接:https://www.luogu.org/problemnew/show/P1044 转载于:https://www.luogu.org/blog/QiXingZhi/solution-p ...
- CH1102 火车进出栈问题(高精/卡特兰数)
描述 一列火车n节车厢,依次编号为1,2,3,-,n.每节车厢有两种运动方式,进栈与出栈,问n节车厢出栈的可能排列方式有多少种. 输入格式 一个数,n(n<=60000) 输出格式 一个数s表示 ...
- [NOIP2003]栈 题解(卡特兰数)
[NOIP2003]栈 Description 宁宁考虑的是这样一个问题:一个操作数序列,从1,2,一直到n(图示为1到3的情况),栈A的深度大于n. 现在可以进行两种操作: 1.将一个数,从操作数序 ...
随机推荐
- 39、请用代码简答实现stack
栈和队列是两种基本的数据结构,同为容器类型.两者根本的区别在于: stack:后进先出 queue:先进先出 PS:stack和queue是不能通过查询具体某一个位置的元素而进行操作的.但是他们的排列 ...
- tf.name_scope tf.variable_scope学习
1. 首先看看比较简单的 tf.name_scope(‘scope_name’). tf.name_scope 主要结合 tf.Variable() 来使用,方便参数命名管理. ''' Signatu ...
- 高通msm mdm 总结
1. svn 获取工程代码命令:svn co svn+ssh://10.20.30.18/svn-repos/msm8916/branches/LA1.1-CS-r113502.2 2. 如何确定那些 ...
- 190.Reverse Bits---位运算
题目链接:https://leetcode.com/problems/reverse-bits/description/ 题目大意:将数值的二进制反转. 法一(借鉴):由于是无符号32位整型,当二进制 ...
- 使用angluar-cli的ng g component home指令出现的错误
Error: ELOOP: too many symbolic links encountered, stat '/Users/zzy/angular/taskmgr/node_modules/@an ...
- CRM 业务
1. 创建CRM项目 引入插件 创建数据库 from django.db import models from django.db import models class Department(mod ...
- Cosbench测试 RGW S3 path_style_access=true模式支持
使用Ceph RGW Cosbench 测试时,文档中没有写如何使用 path_style_access 模式的方法. 查看了一下cosbench源码发现已经支持,只是文档没有写. 提交了一个iss ...
- int类中的方法
我们知道在python中,一切对象都是类,对象的方法都封装在类中,现在来探讨一下int类中的方法: 我们可以通过help(int)和dir(int)来查看int类中都封装了那些方法: 1.bi ...
- “裕同集团&易普优APS项目启动大会”顺利召开
“裕同集团&易普优APS项目启动大会”顺利召开 ——易普优APS助力裕同集团实现精益生产 2017年7月05日,“裕同集团&易普优APS项目启动大会”顺利召开,裕同集团高级王副总裁.I ...
- Saltstack 介绍、安装、配置语法(一)
Slatstack 介绍 官网:https://saltstack.com/ 官方源:http://repo.saltstack.com/ (介绍各操作系统安装方法) yum install htt ...