设置 \(\sqrt{n}\) 个关键点,维护出关键点到每个右端点之间的答案以及Pam的左指针,每次暴力向左插入元素即可,为了去重,还需要记录一下Pam上每个节点在每个关键点为左端点插入到时候到最左边出现位置,总复杂度 \(O(n\sqrt{n})\)。

/*program by mangoyang*/
#pragma GCC optimize("Ofast", "inline")
#include<bits/stdc++.h>
#define inf ((int)(1e9))
#define Max(a, b) ((a) > (b) ? (a) : (b))
#define Min(a, b) ((a) < (b) ? (a) : (b))
typedef long long ll;
using namespace std;
template <class T>
inline void read(T &x){
int f = 0, ch = 0; x = 0;
for(; !isdigit(ch); ch = getchar()) if(ch == '-') f = 1;
for(; isdigit(ch); ch = getchar()) x = x * 10 + ch - 48;
if(f) x = -x;
}
const int N = 100005;
char s[N];
namespace PAM{
int fa[N], ch[N][26], trans[N][26], len[N], size, tail, head;
inline void init(){
fa[0] = 1, len[1] = -1, tail = head = size = 1;
for(int i = 0; i < 26; i++) trans[0][i] = 1;
}
inline int newnode(int x){ return len[++size] = x, size; }
inline void pushback(int l, int r){
int c = s[r] - 'a', p = tail;
while(r - len[p] - 1 < l || s[r-len[p]-1] != s[r]) p = fa[p];
if(!ch[p][c]){
int np = newnode(len[p] + 2); fa[np] = ch[trans[p][c]][c];
memcpy(trans[np], trans[fa[np]], sizeof(trans[np]));
trans[np][s[r-len[fa[np]]]-'a'] = fa[np], ch[p][c] = np;
}
tail = ch[p][c];
if(len[tail] == r - l + 1) head = tail;
}
inline void pushfront(int l, int r){
int c = s[l] - 'a', p = head;
while(l + len[p] + 1 > r || s[l+len[p]+1] != s[l]) p = fa[p];
if(!ch[p][c]){
int np = newnode(len[p] + 2); fa[np] = ch[trans[p][c]][c];
memcpy(trans[np], trans[fa[np]], sizeof(trans[np]));
trans[np][s[l+len[fa[np]]]-'a'] = fa[np], ch[p][c] = np;
}
head = ch[p][c];
if(len[head] == r - l + 1) tail = head;
}
} int bel[N], pos[700][N], pre[700][N], ans[700][N], ti[N], n, type, Q, Ans, tim; int main(){
read(type), read(n), read(Q);
scanf("%s", s + 1);
int S = (int) min(n, 150), block = (n / S) + (n % S > 0);
PAM::init();
for(int i = 1; i <= n; i++) bel[i] = (i - 1) / S + 1;
for(int i = 1; i <= block; i++){
PAM::tail = PAM::head = 1, ++tim;
for(int j = (i - 1) * S + 1; j <= n; j++){
PAM::pushback((i - 1) * S + 1, j);
if(ti[PAM::tail] != tim) {
ti[PAM::tail] = tim, pos[i][PAM::tail] = j, ans[i][j]++;
}
ans[i][j] += ans[i][j-1], pre[i][j] = PAM::head;
}
}
while(Q--){
int l, r; read(l), read(r);
l ^= Ans * type, r ^= Ans * type, ++tim;
if(bel[l] == bel[r]){
PAM::head = PAM::tail = 1, Ans = 0;
for(int i = l; i <= r; i++){
PAM::pushback(l, i);
if(ti[PAM::tail] != tim) ti[PAM::tail] = tim, Ans++;
}
printf("%d\n", Ans); continue;
}
int c = bel[l] + 1;
PAM::head = pre[c][r], Ans = ans[c][r];
for(int i = (c - 1) * S; i >= l; i--){
PAM::pushfront(i, r);
if(ti[PAM::head] != tim){
ti[PAM::head] = tim;
if(!pos[c][PAM::head] || pos[c][PAM::head] > r) Ans++;
}
}
printf("%d\n", Ans);
}
return 0;
}

「2017 山东一轮集训 Day4」基因的更多相关文章

  1. Loj #6069. 「2017 山东一轮集训 Day4」塔

    Loj #6069. 「2017 山东一轮集训 Day4」塔 题目描述 现在有一条 $ [1, l] $ 的数轴,要在上面造 $ n $ 座塔,每座塔的坐标要两两不同,且为整点. 塔有编号,且每座塔都 ...

  2. Loj 6068. 「2017 山东一轮集训 Day4」棋盘

    Loj 6068. 「2017 山东一轮集训 Day4」棋盘 题目描述 给定一个 $ n \times n $ 的棋盘,棋盘上每个位置要么为空要么为障碍.定义棋盘上两个位置 $ (x, y),(u, ...

  3. loj6068. 「2017 山东一轮集训 Day4」棋盘 二分图,网络流

    loj6068. 「2017 山东一轮集训 Day4」棋盘 链接 https://loj.ac/problem/6068 思路 上来没头绪,后来套算法,套了个网络流 经典二分图 左边横,右边列 先重新 ...

  4. 「2017 山东一轮集训 Day4」棋盘(费用流)

    棋盘模型 + 动态加边 #include<cstdio> #include<algorithm> #include<iostream> #include<cs ...

  5. [LOJ#6068]. 「2017 山东一轮集训 Day4」棋盘[费用流]

    题意 题目链接 分析 考虑每个棋子对对应的横向纵向的极大区间的影响:记之前这个区间中的点数为 \(x\) ,那么此次多配对的数量即 \(x\) . 考虑费用流,\(S\rightarrow 横向区间 ...

  6. LOJ 6068「2017 山东一轮集训 Day4」棋盘

    题意 一个 \(n\times n\) 的棋盘上面有若干障碍物. 定义两个棋子可以互相攻击当且仅当这两个棋子的横坐标或纵坐标相等而且中间不能隔着障碍物.(可以隔棋子) 有 \(q\) 次询问,每次询问 ...

  7. Loj #6073.「2017 山东一轮集训 Day5」距离

    Loj #6073.「2017 山东一轮集训 Day5」距离 Description 给定一棵 \(n\) 个点的边带权的树,以及一个排列$ p\(,有\)q $个询问,给定点 \(u, v, k\) ...

  8. 「2017 山东一轮集训 Day5」苹果树

    「2017 山东一轮集训 Day5」苹果树 \(n\leq 40\) 折半搜索+矩阵树定理. 没有想到折半搜索. 首先我们先枚举\(k\)个好点,我们让它们一定没有用的.要满足这个条件就要使它只能和坏 ...

  9. 【LOJ#6066】「2017 山东一轮集训 Day3」第二题(哈希,二分)

    [LOJ#6066]「2017 山东一轮集训 Day3」第二题(哈希,二分) 题面 LOJ 题解 要哈希是很显然的,那么就考虑哈希什么... 要找一个东西可以表示一棵树,所以我们找到了括号序列. 那么 ...

随机推荐

  1. 在Windows下安装MongoDB

    概述 读者可以通过本文来学习在Windows操作系统上安装MongoDB. 从2.2版本开始,Mongo DB不在支持Windows XP.请使用最近的windows来安装最近发布的MongoDB.本 ...

  2. 【洛谷 P3168】 [CQOI2015]任务查询系统(主席树)

    题目链接 被自己的sb错误调到自闭.. 主席树的进阶应用. 把\(P_i\)离散化一下,得到每个\(P_i\)的排名,然后建一棵维护\(m\)个位置的主席树,每个结点记录区间总和和正在进行的任务数. ...

  3. 牛客网习题剑指offer之数值的整数次方

    分析: 要考虑到exponent为0和负数的情况. 如果base是0并且exponent是负数的时候呢?那就发生除0的情况了. AC代码: public class Solution { public ...

  4. git创建新分支推送到远程

    1.创建本地分支 git branch 分支名,例如:git branch 2.0.1.20120806 注:2.0.1.20120806是分支名称,可以随便定义.   2.切换本地分支 git ch ...

  5. Linux 下解决安装多个node冲突的问题(重新安装node)

    一个系统中不经意安装了多个node版本,结果更新后还是原来的版本,下面思考一下解决办法: 敲黑板: 1. nodejs 用 包管理器安装一般在 /usr/local/bin 2. 查看当前目录下的no ...

  6. 多维尺度变换MDS(Multidimensional Scaling)

    流形学习(Manifold Learning)是机器学习中一大类算法的统称,流形学习是非线性的降维方法(an approach to non-linear dimensionality reducti ...

  7. python基础===如何在列表,字典,集合中根据条件筛选数据

    #常见的操作如下: data = [1, 5, -3, -2, 6, 0, 9] res = [] for x in data: if x>=0: res.append(x) print(res ...

  8. mysql开启GTID跳过错误的方法【转】

    1.数据库版本 MySQL> select version()    -> ;+-------------------------------------------+| version( ...

  9. Android 反编译神器jadx的使用

    一.前言 今天介绍一个非常好用的反编译的工具 jadx .jadx 的功能非常的强大,对我而言,基本上满足日常反编译需求. jadx 优点: 图形化的界面. 拖拽式的操作. 反编译输出 Java 代码 ...

  10. Maven核心概念

    一.坐标 在平面几何中,坐标(x,y)可以标识平面中唯一的一个点.在maven中,坐标是为了定位一个唯一确定的jar包.Maven世界拥有大量构建,我们需要找一个用来唯一标识一个构建的统一规范:拥有了 ...