题面

传送门

题解

很容易写出一个暴力

\[\sum_{i=l}^r {i+n-1\choose n-1}{s-i+m\choose m}
\]

即枚举选了多少个步兵,然后用插板法算出方案数

我们对这个换一种角度考虑,可以看做是从\((0,0)\)走到\((s,n+m)\),且必须经过\((l,n),(r,n)\)这条直线的方案数

这个就等价于第\(l\)步向右走时纵坐标在\((0,n-1)\)的方案数减去第\(r+1\)步向右走时在\((0,n-1)\)的方案数

ps:关于第\(p\)步向右走时在\((0,n-1)\)的方案的计算的话,我们枚举一下就行了,即为

\[\sum_{i=0}^{n-1}{p-1+i\choose i}{s+n+m-p-i\choose n+m-i}
\]

其中前面是\(p-1+i\)是因为最后一步强制向右走

//minamoto
#include<bits/stdc++.h>
#define R register
#define fp(i,a,b) for(R int i=(a),I=(b)+1;i<I;++i)
#define fd(i,a,b) for(R int i=(a),I=(b)-1;i>I;--i)
#define go(u) for(int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v)
using namespace std;
const int N=2e7+5,P=998244353;
inline int add(R int x,R int y){return x+y>=P?x+y-P:x+y;}
inline int dec(R int x,R int y){return x-y<0?x-y+P:x-y;}
inline int mul(R int x,R int y){return 1ll*x*y-1ll*x*y/P*P;}
int inv[N],f[N],g[N];
int n,m,s,l,r;
int calc(R int p){
if(p>s)return 0;
int res=0;
f[0]=g[0]=1;
fp(i,1,n+m){
g[i]=1ll*g[i-1]*(p+i-1)%P*inv[i]%P,
f[i]=1ll*f[i-1]*(s-p+i)%P*inv[i]%P;
}
fp(i,0,n-1)res=add(res,mul(f[n+m-i],g[i]));
return res;
}
int main(){
// freopen("testdata.in","r",stdin);
scanf("%d%d%d%d%d",&n,&m,&s,&l,&r);
inv[0]=inv[1]=1;fp(i,2,N-1)inv[i]=1ll*(P-P/i)*inv[P%i]%P;
printf("%d\n",dec(calc(l),calc(r+1)));
return 0;
}

牛客挑战赛30D 小A的昆特牌(组合数学)的更多相关文章

  1. [牛客挑战赛 30D] 小A的昆特牌 解题报告 (组合数学)

    interlinkage: https://ac.nowcoder.com/acm/contest/375/D description: solution: 我们枚举步兵的数量$x$,还剩下$S-x$ ...

  2. 【牛客挑战赛30D】小A的昆特牌(组合问题抽象到二维平面)

    点此看题面 大致题意: 有\(S\)张无编号的牌,可以将任意张牌锻造成\(n\)种步兵或\(m\)种弩兵中的一种,求最后步兵数量大于等于\(l\)小于等于\(r\)的方案数. 暴力式子 首先我们来考虑 ...

  3. 牛客挑战赛30 小G砍树 树形dp

    小G砍树 dfs两次, dp出每个点作为最后一个点的方案数. #include<bits/stdc++.h> #define LL long long #define fi first # ...

  4. 牛客挑战赛30-T3 小G砍树

    link 题目大意: n个节点的带标号无根树.每次选择一个度数为1的节点并将它从树上移除.问总共有多少种不同的方式能将这棵树删到只剩 1 个点.两种方式不同当且仅当至少有一步被删除的节点不同. 题解: ...

  5. 牛客挑战赛 39 牛牛与序列 隔板法 容斥 dp

    LINK:牛牛与序列 (牛客div1的E题怎么这么水... 还没D难. 定义一个序列合法 当且仅当存在一个位置i满足 $a_i>a_,a_j<a_$且对于所有的位置i,$1 \leq a_ ...

  6. 牛客挑战赛 30 A 小G数数

    题目链接:https://ac.nowcoder.com/acm/contest/375/A 分析:我写的时候竟然把它当成了DP....... 还建了个结构体DP数组,保存一二位,不知道当时脑子在抽啥 ...

  7. 5.15 牛客挑战赛40 C 小V和字符串 数位dp 计数问题

    LINK:小V和字符串 容易想到只有1个数相同的 才能有贡献. 知道两个01串 那么容易得到最小步数 大体上就是 第一个串的最前的1和第二个串最前的1进行匹配. 容易想到设f[i][j]表示 前i位1 ...

  8. 5.15 牛客挑战赛40 E 小V和gcd树 树链剖分 主席树 树状数组 根号分治

    LINK:小V和gcd树 时限是8s 所以当时好多nq的暴力都能跑过. 考虑每次询问暴力 跳父亲 这样是nq的 4e8左右 随便过. 不过每次跳到某个点的时候需要得到边权 如果直接暴力gcd的话 nq ...

  9. 5.15 牛客挑战赛40 B 小V的序列 关于随机均摊分析 二进制

    LINK:小V的序列 考试的时候 没想到正解 于是自闭. 题意很简单 就是 给出一个序列a 每次询问一个x 问序列中是否存在y 使得x^y的二进制位位1的个数<=3. 容易想到 暴力枚举. 第一 ...

随机推荐

  1. os.path.dirname( __ file __ ) 2018/6/2

    os.path.dirname( __ file __ ) 2018/6/2 该测试脚本所在的位置:D:\第1层\第2层\第3层\第4层\第5层\test11.py import os #该文件所在位 ...

  2. 【Rsync项目实战一】备份全网服务器数据

    目录 [Rsync项目实战]备份全网服务器数据 [企业案例] 1.1 环境部署 1.2 开始部署backup服务器:Rsync服务端过程: 1.3 开始部署nfs01服务器:Rsync客户端过程: [ ...

  3. DVI与VGA有什么区别

    [DVI与VGA有什么区别] DVI接口的传输信号采用全数字格式,与之对应的是采用模拟信号的VGA接口. VGA和DVI的区别,首先VGA模拟信号的传输比较麻烦,首先是将电脑内的数字信号转换为模拟信号 ...

  4. IEnumerator & IEnumerable

    [IEnumerator] 用于遍历一个对象,IEnumerator在System.Collections命名空间中. public interface IEnumerator { object Cu ...

  5. 关于SharePoint 2016

    在刚刚过去的Ignite 2015技术会议上,微软发布了一些有关SharePoint 2016的消息.下面是对相关消息的一个简短总结: 1.首先,本地部署版本的SharePoint 2016还会有,嗯 ...

  6. go_函数

    函数语法要点 返回值类型写在最后面 可返回多个值 函数可作为参数 没有默认参数,可选参数,只有可变参数列表(...int) package main import ( "fmt" ...

  7. centos6 安装 docker

    一.升级内核(带aufs模块) 1.yum安装带aufs模块的3.10内核(或到这里下载kernel手动安装:http://down.51cto.com/data/1903250) cd /etc/y ...

  8. 万能头文件#include<bits/stdc++.h>

    最近在打cf时赛后翻阅别人的代码总是会发现一个陌生而奇怪的头文件#include<bits/stdc++.h> 奇怪之处就在于基本上所有的代码只要用了这个头文件就不再写其他头文件了. 百度 ...

  9. oracle sql 数结构表id降序

    UPDATE BAS_ORGANIZATION_TYPE T1SET T1.PARENTID=(select rn from (SELECT id,rownum rn FROM BAS_ORGANIZ ...

  10. chrome crx下载路径

    chrome crx下载后会被删除,可在检查时粘贴出来,下载路径在: %localappdata%\Google\Chrome\User Data\Webstore Downloads 参考:http ...