[amazonaccess 1]logistic.py 特征提取
---恢复内容开始---
本文件对应logistic.py
amazonaccess介绍:
根据入职员工的定位(员工角色代码、角色所属家族代码等特征)判断员工是否有访问某资源的权限

logistic.py(python)的关键:
1.通过组合组合几个特征来获取新的特征
例如:组合MGR_ID ROLE_FAMILY得到新特征 hash((85475,290919))=1071656665
2.greedy feature selection
i. 首先从候选特征中选择1个在训练集上表现最好的特征,将其加入好特征goodfeatures中,并将该特征从中候选特征中排除
ii. 从候选特征中选择一个特征与goodfeatures中特征一起,选取在训练数据集中表现最好的特征,加入goodfeatures中,并将该特征从中候选特征中排除
iii.继续选取,直到在训练集上的表现不再增加为止
3.One Hot Encoding
例如:对数据离散数据 [23 33 33 44]进行编码
i. 首先relable,转换为 [0 1 1 2]
ii.对0进行编码 0 0 1 对应 23
对1进行编码 0 1 0 对应 33
对2进行编码 1 0 0 对应 44
这样在最后使用线性模型的时候,离散数据的每个标签都会对应一个权重
代码流程:
1.读取数据,去除ROLE_CODE属性
learner = 'log'
print "Reading dataset..."
train_data = pd.read_csv('train.csv')
test_data = pd.read_csv('test.csv')
submit=learner + str(SEED) + '.csv'
#去除ROLE_CODE特征,因为train和test数据需要同时做变换,所以合到一块
all_data = np.vstack((train_data.ix[:,1:-1], test_data.ix[:,1:-1]))
num_train = np.shape(train_data)[0]
2.对数据进行relable
# Transform data
print "Transforming data..."
# Relabel the variable values to smallest possible so that I can use bincount
# on them later.
relabler = preprocessing.LabelEncoder()
for col in range(len(all_data[0,:])):
relabler.fit(all_data[:, col])
all_data[:, col] = relabler.transform(all_data[:, col])
3.组合特征生成新特征,这里分别组合了2个特征和3个特征,分别生成(28-2)和(56-12)个新特征,并与原特征合并
在组合特征时,排除了(ROLE_FAMILY,ROLE_FAMILY_DESC)和(ROLE_ROLLUP_1,ROLE_ROLLUP_2)组合
因为特征中很多标签对应的数据只有1条或2条,将这些数据合并到个标签中
组合特征的函数
def group_data(data, degree=3, hash=hash):
"""
numpy.array -> numpy.array Groups all columns of data into all combinations of triples
"""
new_data = []
m,n = data.shape
for indicies in combinations(range(n), degree):
#去除ROLE_TITLE和ROLE_FAMILY组合
if 5 in indicies and 7 in indicies:
print "feature Xd"
#去除ROLE_ROLLUP_1和ROLE_ROLLUP_2组合
elif 2 in indicies and 3 in indicies:
print "feature Xd"
else:
new_data.append([hash(tuple(v)) for v in data[:,indicies]])
return array(new_data).T
合并数据只有1条或两条的标签
dp = group_data(all_data, degree=2)
for col in range(len(dp[0,:])):
relabler.fit(dp[:, col])
dp[:, col] = relabler.transform(dp[:, col])
uniques = len(set(dp[:,col]))
maximum = max(dp[:,col])
print col
if maximum < 65534:
count_map = np.bincount((dp[:, col]).astype('uint16'))
for n,i in enumerate(dp[:, col]):
#只有1条数据的标签,合并
if count_map[i] <= 1:
dp[n, col] = uniques
#只有2条数据的标签,合并
elif count_map[i] == 2:
dp[n, col] = uniques+1
else:
for n,i in enumerate(dp[:, col]):
if (dp[:, col] == i).sum() <= 1:
dp[n, col] = uniques
elif (dp[:, col] == i).sum() == 2:
dp[n, col] = uniques+1
print uniques # unique values
uniques = len(set(dp[:,col]))
print uniques
relabler.fit(dp[:, col])
dp[:, col] = relabler.transform(dp[:, col])
将新特征和原特征合并
# Collect the training features together
y = array(train_data.ACTION)
X = all_data[:num_train]
X_2 = dp[:num_train]
X_3 = dt[:num_train] # Collect the testing features together
X_test = all_data[num_train:]
X_test_2 = dp[num_train:]
X_test_3 = dt[num_train:] X_train_all = np.hstack((X, X_2, X_3))
X_test_all = np.hstack((X_test, X_test_2, X_test_3))
4.one hot encoding
def OneHotEncoder(data, keymap=None):
"""
OneHotEncoder takes data matrix with categorical columns and
converts it to a sparse binary matrix. Returns sparse binary matrix and keymap mapping categories to indicies.
If a keymap is supplied on input it will be used instead of creating one
and any categories appearing in the data that are not in the keymap are
ignored
"""
if keymap is None:
keymap = []
for col in data.T:
uniques = set(list(col))
keymap.append(dict((key, i) for i, key in enumerate(uniques)))
total_pts = data.shape[0]
outdat = []
for i, col in enumerate(data.T):
km = keymap[i]
num_labels = len(km)
spmat = sparse.lil_matrix((total_pts, num_labels))
for j, val in enumerate(col):
if val in km:
spmat[j, km[val]] = 1
outdat.append(spmat)
outdat = sparse.hstack(outdat).tocsr()
return outdat, keymap # Xts holds one hot encodings for each individual feature in memory
# speeding up feature selection
Xts = [OneHotEncoder(X_train_all[:,[i]])[0] for i in range(num_features)]
5.greedy feature selection
print "Performing greedy feature selection..."
score_hist = []
N = 10
good_features = set([])
# Greedy feature selection loop
while len(score_hist) < 2 or score_hist[-1][0] > score_hist[-2][0]:
scores = []
for f in range(len(Xts)):
if f not in good_features:
feats = list(good_features) + [f]
Xt = sparse.hstack([Xts[j] for j in feats]).tocsr()
score = cv_loop(Xt, y, model, N)
scores.append((score, f))
print "Feature: %i Mean AUC: %f" % (f, score)
good_features.add(sorted(scores)[-1][1])
score_hist.append(sorted(scores)[-1])
print "Current features: %s" % sorted(list(good_features)) # Remove last added feature from good_features
good_features.remove(score_hist[-1][1])
good_features = sorted(list(good_features))
print "Selected features %s" % good_features
gf = open("feats" + submit, 'w')
print >>gf, good_features
gf.close()
print len(good_features), " features"
6.通过validation选取最优参数,logistic regression为regularization strength
print "Performing hyperparameter selection..."
# Hyperparameter selection loop
score_hist = []
Xt = sparse.hstack([Xts[j] for j in good_features]).tocsr()
if learner == 'NB':
Cvals = [0.001, 0.003, 0.006, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.1]
else:
Cvals = np.logspace(-4, 4, 15, base=2) # for logistic
for C in Cvals:
if learner == 'NB':
model.alpha = C
else:
model.C = C
score = cv_loop(Xt, y, model, N)
score_hist.append((score,C))
print "C: %f Mean AUC: %f" %(C, score)
bestC = sorted(score_hist)[-1][1]
print "Best C value: %f" % (bestC)
7.预测
print "Performing One Hot Encoding on entire dataset..."
Xt = np.vstack((X_train_all[:,good_features], X_test_all[:,good_features]))
Xt, keymap = OneHotEncoder(Xt)
X_train = Xt[:num_train]
X_test = Xt[num_train:] if learner == 'NB':
model.alpha = bestC
else:
model.C = bestC print "Training full model..."
print "Making prediction and saving results..."
model.fit(X_train, y)
preds = model.predict_proba(X_test)[:,1]
create_test_submission(submit, preds)
preds = model.predict_proba(X_train)[:,1]
create_test_submission('Train'+submit, preds)
---恢复内容结束---
[amazonaccess 1]logistic.py 特征提取的更多相关文章
- 【机器学习实战】第5章 Logistic回归
第5章 Logistic回归 Logistic 回归 概述 Logistic 回归虽然名字叫回归,但是它是用来做分类的.其主要思想是: 根据现有数据对分类边界线建立回归公式,以此进行分类. 须知概念 ...
- 【机器学习实战】第5章 Logistic回归(逻辑回归)
第5章 Logistic回归 <script type="text/javascript" src="http://cdn.mathjax.org/mathjax/ ...
- Airbnb新用户的民宿预定结果预测
1. 背景 关于这个数据集,在这个挑战中,您将获得一个用户列表以及他们的人口统计数据.web会话记录和一些汇总统计信息.您被要求预测新用户的第一个预订目的地将是哪个国家.这个数据集中的所有用户都来自美 ...
- sklearn机器学习-泰坦尼克号
sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频) https://study.163.com/course/introduction.htm?courseId=1005269003& ...
- 逻辑回归原理_挑战者飞船事故和乳腺癌案例_Python和R_信用评分卡(AAA推荐)
sklearn实战-乳腺癌细胞数据挖掘(博客主亲自录制视频教程) https://study.163.com/course/introduction.htm?courseId=1005269003&a ...
- 02-14 scikit-learn库之逻辑回归
目录 scikit-learn库之逻辑回归 一.LogisticRegression 1.1 使用场景 1.2 代码 1.3 参数详解 1.4 属性 1.5 方法 二.LogisticRegressi ...
- Sklearn使用良心完整入门教程
The complete .ipynb file can be download through my share in onedrive:https://1drv.ms/u/s!Al86h1dThX ...
- 《机器学习_02_线性模型_Logistic回归》
import numpy as np import os os.chdir('../') from ml_models import utils import matplotlib.pyplot as ...
- 基于Python的卷积神经网络和特征提取
基于Python的卷积神经网络和特征提取 用户1737318发表于人工智能头条订阅 224 在这篇文章中: Lasagne 和 nolearn 加载MNIST数据集 ConvNet体系结构与训练 预测 ...
随机推荐
- FatMouse' Trade(hdoj1009)
Problem Description FatMouse prepared M pounds of cat food, ready to trade with the cats guarding th ...
- 如何测试私有 Private/Internal 方法
在实际开发中,经常会遇到这样的情况. 一个共有的 Public 方法实现某一主要功能,但是由于该功能的实现非常复杂,需要很多的辅助类,辅助方法.由于代码封装性的需求,我们通常需要把这些辅助的类方法定义 ...
- haproxy image跳转 haproxy匹配 匹配到了就停止,不会继续往下匹配
<pre name="code" class="html">/***第一种 nginx 配置: location / { root /var/www ...
- C语言运算符的优先级
熟悉C语言的同学都知道,C语言众多的运算符及繁琐难记的优先级总是搞得我们这些C初学者头大.那么本文就 对C语言中所有的运算符进行汇总,并对其优先级进行一定的介绍. 这里虽然对所有C运算符的优先级进行了 ...
- poj 3230 Travel(dp)
Description One traveler travels among cities. He has to pay for this while he can get some incomes. ...
- 有一种设计风格叫RESTful
一 前言 刚看了<RESTful Web APIs中文版>.试读了前两章. 每本书的第一章都是抽象得不得了,是整本书的总结:开篇说基础有点简单,从教你怎么向地址栏输入地址訪问网页開始(某人 ...
- Swift中元组(Tuples),结构体(Struct),枚举(Enums)之间的区别
Swift有许多种存储数据方式,你可以用枚举(enums),元组(tuples),结构体(structs),类(classes),在这篇文章中我们将比较枚举.元组.结构体之间区别,首先从最简单的开始- ...
- 整理HTML的一些基础
HTML,超文本标记语言(HyperText Markup Language) 超文本:指页面内可以包含图片.链接.音乐.程序等非文字元素 标记:页面的由各种标签(标记)组成,文本有隐藏的文本标签 H ...
- oracle表导入导出
数据导出: 1 将数据库TEST完全导出,用户名system 密码manager 导出到D:\daochu.dmp中 exp system/manager@TEST file=d:\daochu. ...
- TCP/IP详解之:IGMP和DNS
第13章 IGMP:Internet组管理协议 IGMP用于支持主机和路由器进行多播: IGMP是IP层的一部分,IGMP报文通过IP数据报进行传输: IGMP报文长度为固定8 Byte: 报文中,I ...