---恢复内容开始---

本文件对应logistic.py

amazonaccess介绍:

根据入职员工的定位(员工角色代码、角色所属家族代码等特征)判断员工是否有访问某资源的权限

logistic.py(python)的关键:

1.通过组合组合几个特征来获取新的特征

例如:组合MGR_ID ROLE_FAMILY得到新特征 hash((85475,290919))=1071656665

2.greedy feature selection

i.  首先从候选特征中选择1个在训练集上表现最好的特征,将其加入好特征goodfeatures中,并将该特征从中候选特征中排除

ii. 从候选特征中选择一个特征与goodfeatures中特征一起,选取在训练数据集中表现最好的特征,加入goodfeatures中,并将该特征从中候选特征中排除

iii.继续选取,直到在训练集上的表现不再增加为止

3.One Hot Encoding

例如:对数据离散数据 [23 33 33 44]进行编码

i. 首先relable,转换为 [0 1 1 2]

ii.对0进行编码 0 0 1   对应 23

对1进行编码 0 1 0   对应 33

对2进行编码 1 0 0   对应 44

这样在最后使用线性模型的时候,离散数据的每个标签都会对应一个权重

代码流程:

1.读取数据,去除ROLE_CODE属性

learner = 'log'
print "Reading dataset..."
train_data = pd.read_csv('train.csv')
test_data = pd.read_csv('test.csv')
submit=learner + str(SEED) + '.csv'
#去除ROLE_CODE特征,因为train和test数据需要同时做变换,所以合到一块
all_data = np.vstack((train_data.ix[:,1:-1], test_data.ix[:,1:-1]))
num_train = np.shape(train_data)[0]

2.对数据进行relable

# Transform data
print "Transforming data..."
# Relabel the variable values to smallest possible so that I can use bincount
# on them later.
relabler = preprocessing.LabelEncoder()
for col in range(len(all_data[0,:])):
relabler.fit(all_data[:, col])
all_data[:, col] = relabler.transform(all_data[:, col])

3.组合特征生成新特征,这里分别组合了2个特征和3个特征,分别生成(28-2)和(56-12)个新特征,并与原特征合并

在组合特征时,排除了(ROLE_FAMILY,ROLE_FAMILY_DESC)和(ROLE_ROLLUP_1,ROLE_ROLLUP_2)组合

因为特征中很多标签对应的数据只有1条或2条,将这些数据合并到个标签中

组合特征的函数

def group_data(data, degree=3, hash=hash):
"""
numpy.array -> numpy.array Groups all columns of data into all combinations of triples
"""
new_data = []
m,n = data.shape
for indicies in combinations(range(n), degree):
#去除ROLE_TITLE和ROLE_FAMILY组合
if 5 in indicies and 7 in indicies:
print "feature Xd"
#去除ROLE_ROLLUP_1和ROLE_ROLLUP_2组合
elif 2 in indicies and 3 in indicies:
print "feature Xd"
else:
new_data.append([hash(tuple(v)) for v in data[:,indicies]])
return array(new_data).T

合并数据只有1条或两条的标签

dp = group_data(all_data, degree=2)
for col in range(len(dp[0,:])):
relabler.fit(dp[:, col])
dp[:, col] = relabler.transform(dp[:, col])
uniques = len(set(dp[:,col]))
maximum = max(dp[:,col])
print col
if maximum < 65534:
count_map = np.bincount((dp[:, col]).astype('uint16'))
for n,i in enumerate(dp[:, col]):
#只有1条数据的标签,合并
if count_map[i] <= 1:
dp[n, col] = uniques
#只有2条数据的标签,合并
elif count_map[i] == 2:
dp[n, col] = uniques+1
else:
for n,i in enumerate(dp[:, col]):
if (dp[:, col] == i).sum() <= 1:
dp[n, col] = uniques
elif (dp[:, col] == i).sum() == 2:
dp[n, col] = uniques+1
print uniques # unique values
uniques = len(set(dp[:,col]))
print uniques
relabler.fit(dp[:, col])
dp[:, col] = relabler.transform(dp[:, col])

将新特征和原特征合并

# Collect the training features together
y = array(train_data.ACTION)
X = all_data[:num_train]
X_2 = dp[:num_train]
X_3 = dt[:num_train] # Collect the testing features together
X_test = all_data[num_train:]
X_test_2 = dp[num_train:]
X_test_3 = dt[num_train:] X_train_all = np.hstack((X, X_2, X_3))
X_test_all = np.hstack((X_test, X_test_2, X_test_3))

4.one hot encoding

def OneHotEncoder(data, keymap=None):
"""
OneHotEncoder takes data matrix with categorical columns and
converts it to a sparse binary matrix. Returns sparse binary matrix and keymap mapping categories to indicies.
If a keymap is supplied on input it will be used instead of creating one
and any categories appearing in the data that are not in the keymap are
ignored
"""
if keymap is None:
keymap = []
for col in data.T:
uniques = set(list(col))
keymap.append(dict((key, i) for i, key in enumerate(uniques)))
total_pts = data.shape[0]
outdat = []
for i, col in enumerate(data.T):
km = keymap[i]
num_labels = len(km)
spmat = sparse.lil_matrix((total_pts, num_labels))
for j, val in enumerate(col):
if val in km:
spmat[j, km[val]] = 1
outdat.append(spmat)
outdat = sparse.hstack(outdat).tocsr()
return outdat, keymap # Xts holds one hot encodings for each individual feature in memory
# speeding up feature selection
Xts = [OneHotEncoder(X_train_all[:,[i]])[0] for i in range(num_features)]

5.greedy feature selection

print "Performing greedy feature selection..."
score_hist = []
N = 10
good_features = set([])
# Greedy feature selection loop
while len(score_hist) < 2 or score_hist[-1][0] > score_hist[-2][0]:
scores = []
for f in range(len(Xts)):
if f not in good_features:
feats = list(good_features) + [f]
Xt = sparse.hstack([Xts[j] for j in feats]).tocsr()
score = cv_loop(Xt, y, model, N)
scores.append((score, f))
print "Feature: %i Mean AUC: %f" % (f, score)
good_features.add(sorted(scores)[-1][1])
score_hist.append(sorted(scores)[-1])
print "Current features: %s" % sorted(list(good_features)) # Remove last added feature from good_features
good_features.remove(score_hist[-1][1])
good_features = sorted(list(good_features))
print "Selected features %s" % good_features
gf = open("feats" + submit, 'w')
print >>gf, good_features
gf.close()
print len(good_features), " features"

6.通过validation选取最优参数,logistic regression为regularization strength

print "Performing hyperparameter selection..."
# Hyperparameter selection loop
score_hist = []
Xt = sparse.hstack([Xts[j] for j in good_features]).tocsr()
if learner == 'NB':
Cvals = [0.001, 0.003, 0.006, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.1]
else:
Cvals = np.logspace(-4, 4, 15, base=2) # for logistic
for C in Cvals:
if learner == 'NB':
model.alpha = C
else:
model.C = C
score = cv_loop(Xt, y, model, N)
score_hist.append((score,C))
print "C: %f Mean AUC: %f" %(C, score)
bestC = sorted(score_hist)[-1][1]
print "Best C value: %f" % (bestC)

7.预测

print "Performing One Hot Encoding on entire dataset..."
Xt = np.vstack((X_train_all[:,good_features], X_test_all[:,good_features]))
Xt, keymap = OneHotEncoder(Xt)
X_train = Xt[:num_train]
X_test = Xt[num_train:] if learner == 'NB':
model.alpha = bestC
else:
model.C = bestC print "Training full model..."
print "Making prediction and saving results..."
model.fit(X_train, y)
preds = model.predict_proba(X_test)[:,1]
create_test_submission(submit, preds)
preds = model.predict_proba(X_train)[:,1]
create_test_submission('Train'+submit, preds)

---恢复内容结束---

[amazonaccess 1]logistic.py 特征提取的更多相关文章

  1. 【机器学习实战】第5章 Logistic回归

    第5章 Logistic回归 Logistic 回归 概述 Logistic 回归虽然名字叫回归,但是它是用来做分类的.其主要思想是: 根据现有数据对分类边界线建立回归公式,以此进行分类. 须知概念 ...

  2. 【机器学习实战】第5章 Logistic回归(逻辑回归)

    第5章 Logistic回归 <script type="text/javascript" src="http://cdn.mathjax.org/mathjax/ ...

  3. Airbnb新用户的民宿预定结果预测

    1. 背景 关于这个数据集,在这个挑战中,您将获得一个用户列表以及他们的人口统计数据.web会话记录和一些汇总统计信息.您被要求预测新用户的第一个预订目的地将是哪个国家.这个数据集中的所有用户都来自美 ...

  4. sklearn机器学习-泰坦尼克号

    sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频) https://study.163.com/course/introduction.htm?courseId=1005269003& ...

  5. 逻辑回归原理_挑战者飞船事故和乳腺癌案例_Python和R_信用评分卡(AAA推荐)

    sklearn实战-乳腺癌细胞数据挖掘(博客主亲自录制视频教程) https://study.163.com/course/introduction.htm?courseId=1005269003&a ...

  6. 02-14 scikit-learn库之逻辑回归

    目录 scikit-learn库之逻辑回归 一.LogisticRegression 1.1 使用场景 1.2 代码 1.3 参数详解 1.4 属性 1.5 方法 二.LogisticRegressi ...

  7. Sklearn使用良心完整入门教程

    The complete .ipynb file can be download through my share in onedrive:https://1drv.ms/u/s!Al86h1dThX ...

  8. 《机器学习_02_线性模型_Logistic回归》

    import numpy as np import os os.chdir('../') from ml_models import utils import matplotlib.pyplot as ...

  9. 基于Python的卷积神经网络和特征提取

    基于Python的卷积神经网络和特征提取 用户1737318发表于人工智能头条订阅 224 在这篇文章中: Lasagne 和 nolearn 加载MNIST数据集 ConvNet体系结构与训练 预测 ...

随机推荐

  1. 关于网络协议和socket编程基本概念

    TCP协议可以说已经是IT人耳熟能详的协议,最近在学习socket网络编程时后重新温习一下这个协议,针对一些问题做了一些总结,很多理解可能还不是很准确. 1. 协议是什么?所谓的各种网络协议无非是一种 ...

  2. 在WPF中自定义你的绘制(五)

    原文:在WPF中自定义你的绘制(五) 在WPF中自定义你的绘制(五)                                                                   ...

  3. [转]linux下IPTABLES配置详解

    如果你的IPTABLES基础知识还不了解,建议先去看看.开始配置我们来配置一个filter表的防火墙.(1)查看本机关于IPTABLES的设置情况[root@tp ~]# iptables -L -n ...

  4. vc6.0 使用Ado 连接MS-SqlServer2000 连接字符串

    vc6.0 使用Ado 连接MS-SqlServer2000 连接字符串 分类: C/C++ VC 2012-04-12 20:23 836人阅读 评论(0) 收藏 举报 sql server数据库服 ...

  5. MS Sql 查询数据库连接数

    SELECT * FROM [Master].[dbo].[SYSPROCESSES] WHERE [DBID] IN (SELECT [DBID]FROM [Master].[dbo].[SYSDA ...

  6. HDU 3081Marriage Match II(二分法+并检查集合+网络流量的最大流量)

    职务地址:http://acm.hdu.edu.cn/showproblem.php? pid=3081 有一段时间没写最大流的题了,这题建图竟然想了好长时间... 刚開始是按着终于的最大流即是做多轮 ...

  7. Apple Swift学习资料汇总

    今年的苹果开发者大会(WWDC)上,公布了ios8的几个新特性,其中包括引入了群聊功能,支持第三方输入法等功能.但更让开发者感兴趣的莫过于Swift语言的发布了. Swift是apple自创的一门转为 ...

  8. jvm莫名退出问题解决

    当jvm莫名退出,没有留下任何任何信息的时候,在centos的 /var/log/dmesg文件中,或许可以找到一些端倪

  9. js简易写法

    我写JavaScript代码已经很久了,都记不起是什么年代开始的了.对于JavaScript这种语言近几年所取得的成就,我感到非常的兴奋:我很幸运也是这些成就的获益者.我写了不少的文章,章节,还有一本 ...

  10. 对js中prototype的理解

    一直不理解child.prototype = new Parent()和child.prototype =Parent.prototype的区别,到现在为止,我觉得它俩最大的区别就是:前者共享构造器里 ...