Binary Tree

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Total Submission(s): 138    Accepted Submission(s): 73 Special Judge

Problem Description
The Old Frog King lives on the root of an infinite tree. According to the law, each node should connect to exactly two nodes on the next level, forming a full binary tree.
Since the king is professional in math, he sets a number to each node. Specifically, the root of the tree, where the King lives, is 1. Say froot=1.
And for each node u, labels as fu, the left child is fu×2 and right child is fu×2+1. The king looks at his tree kingdom, and feels satisfied.
Time flies, and the frog king gets sick. According to the old dark magic, there is a way for the king to live for another N years, only if he could collect exactly N soul gems.
Initially the king has zero soul gems, and he is now at the root. He will walk down, choosing left or right child to continue. Each time at node x, the number at the node is fx(remember froot=1), he can choose to increase his number of soul gem by fx, or decrease it by fx.
He will walk from the root, visit exactly K nodes (including the root), and do the increasement or decreasement as told. If at last the number is N, then he will succeed.
Noting as the soul gem is some kind of magic, the number of soul gems the king has could be negative.
Given N, K, help the King find a way to collect exactly N soul gems by visiting exactly K nodes.
 
Input
First line contains an integer T, which indicates the number of test cases.
Every test case contains two integers N and K, which indicates soul gems the frog king want to collect and number of nodes he can visit.
⋅ 1≤T≤100.
⋅ 1≤N≤109.
⋅ N≤2K≤260.
 
Output
For every test case, you should output "Case #x:" first, where x indicates the case number and counts from 1.
Then K lines follows, each line is formated as 'a b', where a is node label of the node the frog visited, and b is either '+' or '-' which means he increases / decreases his number by a.
It's guaranteed that there are at least one solution and if there are more than one solutions, you can output any of them.
 
Sample Input
2
5 3
10 4
 
Sample Output
Case #1:
1 +
3 -
7 +
Case #2:
1 +
3 +
6 -
12 +
 

题解:

给你一个满二叉树,从根开始往下走,每次加上或减去当前节点的权值,最终结果等与N,2^k>=N,由于1+2+4+....+2^(k-1)等于2^k-1(前k层的和)所以只需要减去x=2^k-1-N就好了,而x可以表示为2^a+2^b+2^c......所以用lowbit标记就好了;

代码:

#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<vector>
#include<algorithm>
#include<queue>
using namespace std;
const int INF=0x3f3f3f3f;
const double PI=acos(-1.0);
#define SI(x) scanf("%d",&x)
#define SL(x) scanf("%lld",&x)
#define PI(x) printf("%d",x)
#define PL(x) printf("%lld",x)
#define T_T while(T--)
#define P_ printf(" ")
#define mem(x,y) memset(x,y,sizeof(x))
typedef long long LL;
LL lowbit(LL x){return x&(-x);}
LL sign[65];
int main(){
int kase=0;
int T,K;
LL N;
SI(T);
T_T{
mem(sign,0);
SL(N);SI(K);
LL x=(1<<K)-N-1;
// PL(x);puts("");
if(x&1)x++;
//printf("%lld\n",x);
//x>>=1;
x/=2;
while(x>0){
LL temp=lowbit(x);
x-=temp;
int p=0;
while(temp>0){
p++;
temp>>=1;
}
sign[p]=1;
}
printf("Case #%d:\n",++kase);
for(int i=1;i<=K;i++){
if(i==K){
if(((1<<K)-N-1)&1)PL((1<<(i-1))+1),P_;
else PL(1<<(i-1)),P_;
}
else PL(1<<(i-1)),P_;
if(sign[i])puts("-");
else puts("+");
}
}
return 0;
}

  

Binary Tree(二叉树+思维)的更多相关文章

  1. Leetcode 110 Balanced Binary Tree 二叉树

    判断一棵树是否是平衡树,即左右子树的深度相差不超过1. 我们可以回顾下depth函数其实是Leetcode 104 Maximum Depth of Binary Tree 二叉树 /** * Def ...

  2. [LeetCode] 111. Minimum Depth of Binary Tree ☆(二叉树的最小深度)

    [Leetcode] Maximum and Minimum Depth of Binary Tree 二叉树的最小最大深度 (最小有3种解法) 描述 解析 递归深度优先搜索 当求最大深度时,我们只要 ...

  3. [LeetCode] 111. Minimum Depth of Binary Tree 二叉树的最小深度

    Given a binary tree, find its minimum depth. The minimum depth is the number of nodes along the shor ...

  4. [LeetCode] 543. Diameter of Binary Tree 二叉树的直径

    Given a binary tree, you need to compute the length of the diameter of the tree. The diameter of a b ...

  5. 637. Average of Levels in Binary Tree 二叉树的层次遍历再求均值

    [抄题]: Given a non-empty binary tree, return the average value of the nodes on each level in the form ...

  6. [LeetCode] Serialize and Deserialize Binary Tree 二叉树的序列化和去序列化

    Serialization is the process of converting a data structure or object into a sequence of bits so tha ...

  7. [LeetCode] Lowest Common Ancestor of a Binary Tree 二叉树的最小共同父节点

    Given a binary tree, find the lowest common ancestor (LCA) of two given nodes in the tree. According ...

  8. [LeetCode] Minimum Depth of Binary Tree 二叉树的最小深度

    Given a binary tree, find its minimum depth. The minimum depth is the number of nodes along the shor ...

  9. [LeetCode] Maximum Depth of Binary Tree 二叉树的最大深度

    Given a binary tree, find its maximum depth. The maximum depth is the number of nodes along the long ...

  10. 【LeetCode】Minimum Depth of Binary Tree 二叉树的最小深度 java

    [LeetCode]Minimum Depth of Binary Tree Given a binary tree, find its minimum depth. The minimum dept ...

随机推荐

  1. 深入了解epoll (转)

    一. 介绍 Epoll 是一种高效的管理socket的模型,相对于select和poll来说具有更高的效率和易用性.传统的select以及poll的效率会因为 socket数量的线形递增而导致呈二次乃 ...

  2. setInterval()与clearInterval()的用法

    setInterval() 方法可按照指定的周期来调用函数或计算表达式.  --简单地说就是过一段时间调用一次该函数 setInterval() 方法会不停地调用函数,直到 clearInterval ...

  3. iOS 百度地图大头针使用

    百度地图使用第五讲:大头针使用(地图标注)http://bbs.yusian.com/thread-8384-1-1.html(出处: 小龙虾IT笔记)

  4. [SAP] 外部系统调用SAP web service用户验证的简单方法

    场景: 一个Java系统调用SAP系统提供的web service,除了根据WSDL生成的代理类,调用相应方法,传入相应参数外,还等需要使用SAP提供的用户信息进行身份验证,最简单的方法是在soap请 ...

  5. BZOJ 2724: [Violet 6]蒲公英( 分块 )

    虽然AC了但是时间惨不忍睹...不科学....怎么会那么慢呢... 无修改的区间众数..分块, 预处理出Mode[i][j]表示第i块到第j块的众数, sum[i][j]表示前i块j出现次数(前缀和, ...

  6. python自学笔记(四)python基本数据类型之元组、集合、字典

    一.元组tuple 特性 1.有序集合 2.通过偏移来取数据 3.不可变对象,不能在原地修改内存,没有排序.修改等操作 元组不可变的好处:保证数据的安全,比如我们传给一个不熟悉的方法,确保不会改变我们 ...

  7. 想精度高,可以考虑用c语言中的函数gettimeofday

    大家好: 在 win32 + bcb 时, 有个 GetTickCount() 返回第统启动到现在的 tick, 单位 ms.请问在 Linux + qt5 怎样实现呢? 如果用 QDateTime ...

  8. Microsoft SQL Server 混合云博客系列

    Microsoft 云操作系统愿景的核心支柱之一就是借助我们的混合云基础结构改造数据中心.在 Windows Azure 基础结构服务正式发布后的几个月里,我们一直在发布博客,介绍 Windows A ...

  9. HDU 1104 Remainder( BFS(广度优先搜索))

    Remainder Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Sub ...

  10. c#个性化安装包

    近来想做一个模仿QQ或猎豹浏览器那样的个性化安装包,NSIS或IS等简单看了一下,比较复杂还不确定能不能实现. 想了一下,可以自己开发一个安装包程序,新建一个windows项目,但不知如何将已开发完成 ...