hdu1588之经典矩阵乘法
Gauss Fibonacci
Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1706 Accepted Submission(s): 741
How good an opportunity that Gardon can not give up! The "Problem GF" told by Angel is actually "Gauss Fibonacci".
As we know ,Gauss is the famous mathematician who worked out the sum from 1 to 100 very quickly, and Fibonacci is the crazy man who invented some numbers.
Arithmetic progression:
g(i)=k*i+b;
We assume k and b are both non-nagetive integers.
Fibonacci Numbers:
f(0)=0
f(1)=1
f(n)=f(n-1)+f(n-2) (n>=2)
The Gauss Fibonacci problem is described as follows:
Given k,b,n ,calculate the sum of every f(g(i)) for 0<=i<n
The answer may be very large, so you should divide this answer by M and just output the remainder instead.
Each of them will not exceed 1,000,000,000.
2 0 4 100
12
题目要求求出f(g(i))的总和,i是0~n-1
代码中详细思路+注释
/*f(g(i))=f(k*i+b)
令f[n]=A;//A是矩阵,A的某个元素是F[n]
若i=0~n-1,则sum(f(k*i+b))
=A^b+A^(k+b)+A^(2k+b)+A^(3k+b)+...+A^((n-1)k+b)
=A^b+A^b(A^k+A^2k+A^3k+A^4k+...+A^(n-1)k)
将A^k看成一个新的矩阵B,则原式:
=A^b+A^b(B^1+B^2+B^3+...+B^(n-1));//A^b,A^k用矩阵快速幂求出,括号中的用二分矩阵可求
所谓二分矩阵:A^1+A^2+A^3+A^4+A^5+A^6=(A^1+A^2+A^3)+A^3(A^1+A^2+A^3)
*/
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<string>
#include<queue>
#include<algorithm>
#include<map>
#include<iomanip>
#define INF 99999999
using namespace std; const int MAX=2;
__int64 array[MAX][MAX],sum[MAX][MAX],temp[MAX][MAX],ans[MAX][MAX];
//array相当于A,sum记录每次幂乘后的矩阵,temp是临时矩阵,ans是B^1+B^2+B^3+...+B^n void MatrixInit(__int64 a[MAX][MAX],bool flag){//初始化矩阵
for(int i=0;i<MAX;++i){
for(int j=0;j<MAX;++j){
if(flag)a[i][j]=array[i][j];//a=A
else a[i][j]=(i == j);//a=1
}
}
} void MatrixAdd(__int64 a[MAX][MAX],__int64 b[MAX][MAX],int &mod){//矩阵相加
for(int i=0;i<MAX;++i){//a=a+b
for(int j=0;j<MAX;++j){
a[i][j]=(a[i][j]+b[i][j])%mod;
}
}
} void MatrixMult(__int64 a[MAX][MAX],__int64 b[MAX][MAX],int &mod){//矩阵相乘
__int64 c[MAX][MAX]={0};
for(int i=0;i<MAX;++i){//a=a*b
for(int j=0;j<MAX;++j){
for(int k=0;k<MAX;++k){
c[i][j]+=a[i][k]*b[k][j];
}
}
}
for(int i=0;i<MAX;++i){
for(int j=0;j<MAX;++j)a[i][j]=c[i][j]%mod;
}
} void MatrixPow(int k,int &mod){//矩阵幂乘,sum=A^k
MatrixInit(sum,0);//sum=1
MatrixInit(temp,1);//temp=A
while(k){
if(k&1)MatrixMult(sum,temp,mod);
MatrixMult(temp,temp,mod);
k>>=1;
}
} void MatrixSum(int k,int &mod){//矩阵求和
if(k == 1){MatrixInit(ans,1);return;}
MatrixSum(k/2,mod);
MatrixPow((k+1)/2,mod);
if(k&1){//k为奇数则A+(A+A^m)*(A+A^2+A^3...),m=(k+1)/2
MatrixInit(temp,1);//temp=A
MatrixAdd(sum,temp,mod);//sum=A+A^m
MatrixMult(ans,sum,mod);//ans=sum*ans
MatrixAdd(ans,temp,mod);//ans=A+ans
}
else{//k为偶数则(1+A^m)*(A+A^2+A^3...),m=(k+1)/2
MatrixInit(temp,0);//temp=1
MatrixAdd(temp,sum,mod);//temp=1+A^m
MatrixMult(ans,temp,mod);//ans=ans*temp;
}
} int main(){
int k,b,n,m;
while(scanf("%d%d%d%d",&k,&b,&n,&m)!=EOF){
array[0][0]=array[0][1]=array[1][0]=1;
array[1][1]=0;
MatrixPow(k,m);//求A^k
MatrixInit(array,0);
MatrixMult(array,sum,m);//将array构造成B,即A^k
MatrixSum(n-1,m);//求矩阵和
array[0][0]=array[0][1]=array[1][0]=1;
array[1][1]=0;
MatrixPow(b,m);//求A^b;
MatrixMult(ans,sum,m);//求A^b*ans
MatrixAdd(ans,sum,m);//求A^b+A^b+ans
printf("%I64d\n",ans[1][0]);
}
return 0;
}
hdu1588之经典矩阵乘法的更多相关文章
- poj3233之经典矩阵乘法
Matrix Power Series Time Limit: 3000MS Memory Limit: 131072K Total Submissions: 12346 Accepted: ...
- zoj3497(经典矩阵乘法)
原以为是用搜索做的题,想了好久都无法想到一个高效正确的解法. 后面发现竟然这就是矩阵的应用! 碉堡! 给定一个有向图,问从A点恰好走k步(允许重复经过边)到达B点的方案数mod p的值 ——选自ma ...
- 学习心得:《十个利用矩阵乘法解决的经典题目》from Matrix67
本文来自:http://www.matrix67.com/blog/archives/tag/poj大牛的博文学习学习 节选如下部分:矩阵乘法的两个重要性质:一,矩阵乘法不满足交换律:二,矩阵乘法满足 ...
- 【转】Matrix67:十个利用矩阵乘法解决的经典题目
好像目前还没有这方面题目的总结.这几天连续看到四个问这类题目的人,今天在这里简单写一下.这里我们不介绍其它有关矩阵的知识,只介绍矩阵乘法和相关性质. 不要以为数学中的矩阵也是黑色屏幕上不断变化的 ...
- 【矩阵乘法经典应用】【ZOJ3497】【Mistwa】
题意:给定一个有向图(最多25个节点,每个节点的出度最多为4),给定起点和终点,然后从起点开始走,走到终点就停止,否则一直往下走,问能不能P步到达终点.也就是说从起点出发,走一条长度为P的路径,路径中 ...
- CH Round #30 摆花[矩阵乘法]
摆花 CH Round #30 - 清明欢乐赛 背景及描述 艺术馆门前将摆出许多花,一共有n个位置排成一排,每个位置可以摆花也可以不摆花.有些花如果摆在相邻的位置(隔着一个空的位置不算相邻),就不好看 ...
- 【BZOJ-1898】Swamp 沼泽鳄鱼 矩阵乘法
1898: [Zjoi2005]Swamp 沼泽鳄鱼 Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 1012 Solved: 566[Submit][S ...
- 【poj3070】矩阵乘法求斐波那契数列
[题目描述] 我们知道斐波那契数列0 1 1 2 3 5 8 13…… 数列中的第i位为第i-1位和第i-2位的和(规定第0位为0,第一位为1). 求斐波那契数列中的第n位mod 10000的值. [ ...
- 如何使用矩阵乘法加速动态规划——以[SDOI2009]HH去散步为例
对这个题目的最初理解 开始看到这个题,觉得很水,直接写了一个最简单地动态规划,就是定义 f[i][j]为到了i节点路径长度为j的路径总数, 转移的话使用Floyd算法的思想去转移,借助这个题目也理解了 ...
随机推荐
- 动态创建和移除HTML标签
1.w3school定义 添加新内容的四个 jQuery 方法: append() - 在被选元素的结尾插入内容 prepend() - 在被选元素的开头插入内容 after() - 在被选元素之后插 ...
- 正则表达式小试牛刀--匹配我的csdn博文标题
正则表达式小试牛刀--匹配我的博文标题 作者:vpoet 邮箱:vpoet_sir@163.com 正则匹配,我以我的博客页面的博客标题为例:http://blog.csdn.net/u0130187 ...
- 操作系统基本概念(内核态与用户态、操作系统结构)-by sixleaves
内核态与用户态(为什么存在这种机制.程序应处于哪个状态.如何判断当前所处状态.哪些功能需要内核态.如何实现这种机制) 1.首先我们应该思考清楚为什么会有内核态和用户态?(为什么存在这种机制) 因为计算 ...
- LINUX下 Udev详解
如果你使用Linux比较长时间了,那你就知道,在对待设备文件这块,Linux改变了几次策略.在Linux早期,设备文件仅仅是是一些带有适当的属性集的普通文件,它由mknod命令创建,文件存放在/dev ...
- fullcalender
http://blog.csdn.net/francislaw/article/details/7740630 引用 <link rel="stylesheet" href= ...
- [置顶] ID3算法的python实现
这篇文章的内容接着http://blog.csdn.net/xueyunf/article/details/9214727的内容,所有还有部分函数在http://blog.csdn.net/xueyu ...
- [Android4.4.3] Nubia Z5S Mokee4.4.3 RC2.0 by syhost
这个ROM先前在Mokee官网公布过,但一些人測试bug不少,因此已经撤下, 但又有人反馈跟之前RC1.0版的bug差点儿相同, 所以再次在网盘单独公布, 截图以及注意事项见之前的RC1.0的帖子, ...
- 计算机与ARM板通过路由器相连
首先,使用两根网线分别将计算机和ARM板与路由器的LAN口连接. 要想使计算机和ARM板通信,必须使二者在同一网段. 在计算机的终端输入:ifconfig 获取计算机的ip地址,查看eth0,我的ip ...
- zookeeper 丢失事件/miss event
今天在统计页面上发现有个节点丢失了,经过仔细分析后,发现同一个节点上的二个应用(同时监控zk)其中一个丢失了一个event,检查zk cluster没有发现异常... 通过网络搜寻,出现miss ev ...
- ADO.net基础学习总结
ADO.net是一门.net连接.操作数据库的技术 释放资源:凡是实现了idisposable借口的类都需要用using来释放资源 using() { } 连接数据库 //创建数据库连接: usi ...