BZOJ 1004: [HNOI2008]Cards( 置换群 + burnside引理 + 背包dp + 乘法逆元 )

题意保证了是一个置换群.
根据burnside引理, 答案为Σc(f) / (M+1). c(f)表示置换f的不动点数, 而题目限制了颜色的数量, 所以还得满足题目, 用背包dp来计算.dp(x,i,j,k) = dp(x,i-cntx,j,k)+dp(x,i,j-cntx,k)+dp(x,i,j,k-cntx)表示前x个置换红蓝绿个用了i,j,k次,cntx表示第x个置换的循环数. 然后最后乘(M+1)的乘法逆元就OK了.
----------------------------------------------------------------------------
----------------------------------------------------------------------------
1004: [HNOI2008]Cards
Time Limit: 10 Sec Memory Limit: 162 MB
Submit: 2381 Solved: 1388
[Submit][Status][Discuss]
Description
小春现在很清闲,面对书桌上的N张牌,他决定给每张染色,目前小春只有3种颜色:红色,蓝色,绿色.他询问Sun有多少种染色方案,Sun很快就给出了答案.进一步,小春要求染出Sr张红色,Sb张蓝色,Sg张绝色.他又询问有多少种方案,Sun想了一下,又给出了正确答案. 最后小春发明了M种不同的洗牌法,这里他又问Sun有多少种不同的染色方案.两种染色方法相同当且仅当其中一种可以通过任意的洗牌法(即可以使用多种洗牌法,而每种方法可以使用多次)洗成另一种.Sun发现这个问题有点难度,决定交给你,答案可能很大,只要求出答案除以P的余数(P为质数).
Input
第一行输入 5 个整数:Sr,Sb,Sg,m,p(m<=60,m+1<p<100)。n=Sr+Sb+Sg。接下来 m 行,每行描述
一种洗牌法,每行有 n 个用空格隔开的整数 X1X2...Xn,恰为 1 到 n 的一个排列,表示使用这种洗牌法,
第 i位变为原来的 Xi位的牌。输入数据保证任意多次洗牌都可用这 m种洗牌法中的一种代替,且对每种
洗牌法,都存在一种洗牌法使得能回到原状态。
Output
不同染法除以P的余数
Sample Input
2 3 1
3 1 2
Sample Output
HINT
有2 种本质上不同的染色法RGB 和RBG,使用洗牌法231 一次可得GBR 和BGR,使用洗牌法312 一次 可得BRG 和GRB。
100%数据满足 Max{Sr,Sb,Sg}<=20。
Source
BZOJ 1004: [HNOI2008]Cards( 置换群 + burnside引理 + 背包dp + 乘法逆元 )的更多相关文章
- [BZOJ 1004] [HNOI2008] Cards 【Burnside引理 + DP】
题目链接:BZOJ - 1004 题目分析 首先,几个定义和定理引理: 群:G是一个集合,*是定义在这个集合上的一个运算. 如果满足以下性质,那么(G, *)是一个群. 1)封闭性,对于任意 a, b ...
- [bzoj1004][HNOI2008][Cards] (置换群+Burnside引理+动态规划)
Description 小春现在很清闲,面对书桌上的N张牌,他决定给每张染色,目前小春只有3种颜色:红色,蓝色,绿色.他询问Sun有多少种染色方案,Sun很快就给出了答案.进一步,小春要求染出Sr张红 ...
- 【bzoj1004】[HNOI2008]Cards Burnside引理+背包dp
题目描述 用三种颜色染一个长度为 $n=Sr+Sb+Sg$ 序列,要求三种颜色分别有 $Sr,Sb,Sg$ 个.给出 $m$ 个置换,保证这 $m$ 个置换和置换 ${1,2,3,...,n\choo ...
- BZOJ 1004 HNOI2008 Cards Burnside引理
标题效果:特定n张卡m换人,编号寻求等价类 数据保证这m换人加上置换群置换后本身构成 BZOJ坑爹0.0 条件不那么重要出来尼玛怎么做 Burnside引理--昨晚为了做这题硬啃了一晚上白书0.0 都 ...
- 【BZOJ1004】【HNOI2008】Cards 群论 置换 burnside引理 背包DP
题目描述 有\(n\)张卡牌,要求你给这些卡牌染上RGB三种颜色,\(r\)张红色,\(g\)张绿色,\(b\)张蓝色. 还有\(m\)种洗牌方法,每种洗牌方法是一种置换.保证任意多次洗牌都可用这\( ...
- bzoj 1004 [HNOI2008]Cards && poj 2409 Let it Bead ——置换群
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1004 http://poj.org/problem?id=2409 学习材料:https:/ ...
- BZOJ1004: [HNOI2008]Cards(Burnside引理 背包dp)
Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 4255 Solved: 2582[Submit][Status][Discuss] Descript ...
- BZOJ 1004: [HNOI2008]Cards
Description 给你一个序列,和m种可以使用多次的置换,用3种颜色染色,求方案数%p. Sol Burnside定理+背包. Burnside定理 \(N(G,\mathbb{C})=\fra ...
- BZOJ 1004: [HNOI2008]Cards [Polya 生成函数DP]
传送门 题意:三种颜色,规定使用每种颜色次数$r,g,b$,给出一个置换群,求多少种不等价着色 $m \le 60,\ r,g,b \le 20$ 咦,规定次数? <组合数学>上不是有生成 ...
随机推荐
- Push segues can only be used when the.....
刚刚遇到的两个错误,. 1, Terminating app due to uncaught exception'NSGenericException', reason: 'Push segues c ...
- C++ 面向对象学习1
#include "stdafx.h" #include <iostream> //不要遗漏 否则不能使用cout using namespace std; class ...
- 我被SQL注入撞了一下腰
网站的注入漏洞,应该说绝大多数做web开发的人都知道的事情.可是没想到从事6,7年开发工作的我,却会在这上栽了跟头,真是郁闷啊.心情很纠结,按照老婆的话,怎么感觉我像失恋了一样. 事情的起因还是在几个 ...
- css3: css3选择器
--------------------css3选择器-------------------------css3属性选择器 ~~属性选择器基本上ie7+都支持,可以相对放心的使用 见: www.ca ...
- 模拟美萍加密狗--Rockey2虚拟狗(四)
目录(?)[+] 首先,抱怨一下.学校个破网,似乎把我端口封了,死活分不上IP,也许是是我MAC改的太频繁了,有盗号嫌疑…… 然后,正文开始…… 其实虚拟狗几天前就写完了,可这几天上不了网 ...
- ThinkPHP 3.1.2 视图-1
一.模板的使用 (重点) a.规则 模板文件夹下[TPL]/[分组文件夹/][模板主题文件夹/]和模块名同名的文件夹[Index]/和方法名同名的文件 [index].html(.tpl) 更换模板文 ...
- 【Leetcode】Triangle
给定一个由数字组成的三角形,从顶至底找出路径最小和. Given a triangle, find the minimum path sum from top to bottom. Each step ...
- hdu 3228 (最大流+二分)
题意:一共有N个城市,一些城市里有金矿,一些城市里有仓库,金矿和仓库都有一个容量,有M条边,每条边是双向的,有一个权值,求将所有金矿里的储量都运送到仓库中,所需要经过的道路中,使最大的权值最小 思路: ...
- VS2010 简单实用快捷键
VS2010 简单实用快捷键 1). Ctrl+H: 替换 2). Ctrl+F: 查找 3). F5: 启动调试 4). CTRL + F7 生成编译 5). Ctrl+F5: 开始执行(不调试) ...
- Lua学习笔记5:类及继承的实现
-- Lua中类的实现 -------------------------------- 基类 ---------------------------- classBase = {x = 0,y = ...