10399: F.Turing equation

Time Limit: 1 Sec  Memory Limit: 128 MB Submit: 151  Solved: 84 [Submit][Status][Web Board]

Description

The fight goes on, whether to store  numbers starting with their most significant digit or their least  significant digit. Sometimes  this  is also called  the  "Endian War". The battleground  dates far back into the early days of computer  science. Joe Stoy,  in his (by the way excellent)  book  "Denotational Semantics", tells following story:
"The decision  which way round the digits run is,  of course, mathematically trivial. Indeed,  one early British computer  had numbers running from right to left (because the  spot on an oscilloscope tube  runs from left to right, but  in serial logic the least significant digits are dealt with first). Turing used to mystify audiences at public lectures when, quite by accident, he would slip into this mode even for decimal arithmetic, and write  things  like 73+42=16.  The next version of  the machine was  made  more conventional simply  by crossing the x-deflection wires:  this,  however, worried the engineers, whose waveforms  were all backwards. That problem was in turn solved by providing a little window so that the engineers (who tended to be behind the computer anyway) could view the oscilloscope screen from the back.
You will play the role of the audience and judge on the truth value of Turing's equations.

Input

The input contains several test cases. Each specifies on a single line a Turing equation. A Turing equation has the form "a+b=c", where a, b, c are numbers made up of the digits 0,...,9. Each number will consist of at most 7 digits. This includes possible leading or trailing zeros. The equation "0+0=0" will finish the input and has to be processed, too. The equations will not contain any spaces.

Output

For each test case generate a line containing the word "TRUE" or the word "FALSE", if the equation is true or false, respectively, in Turing's interpretation, i.e. the numbers being read backwards.

Sample Input

73+42=16
5+8=13
0001000+000200=00030
0+0=0

Sample Output

TRUE
FALSE
TRUE

HINT

 

Source

题解:把数字反转问等式是否成立;

代码:

#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
#define mem(x,y) memset(x,y,sizeof(x))
#define SI(x) scanf("%d",&x)
#define SL(x) scanf("%lld",&x)
#define PI(x) printf("%d",x)
#define PL(x) printf("%lld",x)
#define P_ printf(" ")
const int INF=0x3f3f3f3f;
const double PI=acos(-1.0);
typedef long long LL;
char s[35],t[10];
int ans[3];
int main(){
while(scanf("%s",s),strcmp(s,"0+0=0")){
int k=0,tp=0,temp=0;
for(int i=0;s[i];i++){
if(isdigit(s[i])){
t[k++]=s[i];
}
else{
reverse(t,t+k);
for(int j=0;j<k;j++)
temp=temp*10+t[j]-'0';
ans[tp++]=temp;
k=0;temp=0;
}
}
reverse(t,t+k);
for(int j=0;j<k;j++)
temp=temp*10+t[j]-'0';
ans[tp++]=temp;
// printf("%d %d %d\n",ans[0],ans[1],ans[2]);
if(ans[0]+ans[1]==ans[2])puts("TRUE");
else puts("FALSE");
}
return 0;
}

  

第七届河南省赛F.Turing equation(模拟)的更多相关文章

  1. 第七届河南省赛10403: D.山区修路(dp)

    10403: D.山区修路 Time Limit: 2 Sec  Memory Limit: 128 MB Submit: 69  Solved: 23 [Submit][Status][Web Bo ...

  2. 第七届河南省赛10402: C.机器人(扩展欧几里德)

    10402: C.机器人 Time Limit: 2 Sec  Memory Limit: 128 MB Submit: 53  Solved: 19 [Submit][Status][Web Boa ...

  3. 第七届河南省赛G.Code the Tree(拓扑排序+模拟)

    G.Code the Tree Time Limit: 2 Sec  Memory Limit: 128 MB Submit: 35  Solved: 18 [Submit][Status][Web ...

  4. 第七届河南省赛B.海岛争霸(并差集)

    B.海岛争霸 Time Limit: 2 Sec  Memory Limit: 128 MB Submit: 130  Solved: 48 [Submit][Status][Web Board] D ...

  5. 第七届河南省赛A.物资调度(dfs)

    10401: A.物资调度 Time Limit: 2 Sec  Memory Limit: 128 MB Submit: 95  Solved: 54 [Submit][Status][Web Bo ...

  6. 第七届河南省赛H.Rectangles(lis)

    10396: H.Rectangles Time Limit: 2 Sec  Memory Limit: 128 MB Submit: 229  Solved: 33 [Submit][Status] ...

  7. 第八届河南省赛F.Distribution(水题)

    10411: F.Distribution Time Limit: 1 Sec  Memory Limit: 128 MB Submit: 11  Solved: 8 [Submit][Status] ...

  8. 算法笔记_122:蓝桥杯第七届省赛(Java语言A组)试题解答

     目录 1 煤球数目 2 生日蜡烛 3 搭积木 4 分小组 5 抽签 6 寒假作业 7 剪邮票 8 取球博弈 9 交换瓶子 10 压缩变换   前言:以下试题解答代码部分仅供参考,若有不当之处,还请路 ...

  9. 山东省第七届省赛 D题:Swiss-system tournament(归并排序)

    Description A Swiss-system tournament is a tournament which uses a non-elimination format. The first ...

随机推荐

  1. 简单的表单验证(js、jquery)

    //javascript代码 function valForm(){ var username=document.getElementById("username"); var p ...

  2. mac apktool配置

    Apktool:http://ibotpeaches.github.io/Apktool/install/ 最新版本2.0.1 dex2jar: https://github.com/pxb1988/ ...

  3. Grunt之学习历程(转自网上资源-整理自用)

    认识Grunt Grunt中文文档 安装Node环境 CNode 配置Grunt Grunt中文文档-配置任务 什么是package.json package.json中文文档 关于Grunt资料 应 ...

  4. [方法] ubuntu12.04开启root账户

    ubuntu 12.04使用LightDM显示管理器,默认禁止root账户登录. 通过修改/etc/lightdm/lightdm.con文件可以打开root登录权限. 方法很简单,只要在lightd ...

  5. billing是如何的拆分的?

    在SD模块中,我们经常会考虑Billing分拆,分拆的标准如下: 一.根据Billing的字段项目进行分拆 在sap的标准系统中,系统会比较VBRK表的所有字段(也包含复制拆分组合标准字段ZUKRI) ...

  6. Sprite Kit编程指南中文版下载

    下载地址:http://download.csdn.net/detail/xin814/6032573 关于Sprite Kit 重要提示:  这是API或开发技术的一个初版文档.虽然本文档的技术准确 ...

  7. City Game(动态规划)

    City Game Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total ...

  8. java中的上传下载----ajaxFileUpload+struts2

    文件上传在项目中应该是非常常见的,而且很多时候,上传文件都只是一个小页面中的一个功能,要求在实现文件上传的前提下不刷新页面.而一般情况下将客户端的文件包装成网络地址传递到服务器端然后通过流来进行文件传 ...

  9. IOS开发:xcode5版本引发的问题

    下面这段代码是用于处理ios7头部透明问题的 #if __IPHONE_OS_VERSION_MAX_ALLOWED >= 70000 if ( IOS7_OR_LATER ) { self.e ...

  10. 达内TTS6.0课件oop_day02