Lining Up

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 1274    Accepted Submission(s): 366

Problem Description
``How am I ever going to solve this problem?" said the pilot. 
Indeed, the pilot was not facing an easy task. She had to drop packages at specific points scattered in a dangerous area. Furthermore, the pilot could only fly over the area once in a straight line, and she had to fly over as many points as possible. All points were given by means of integer coordinates in a two-dimensional space. The pilot wanted to know the largest number of points from the given set that all lie on one line. Can you write a program that calculates this number? 
Your program has to be efficient! 
 
Input
The input consists of multiple test cases, and each case begins with a single positive integer on a line by itself indicating the number of points, followed by N pairs of integers, where 1 < N < 700. Each pair of integers is separated by one blank and ended by a new-line character. No pair will occur twice in one test case. 
 
Output
For each test case, the output consists of one integer representing the largest number of points that all lie on one line, one line per case.
 
Sample Input
5
1 1
2 2
3 3
9 10
10 11
 
Sample Output
3
 

题解:错了好一会儿,发现是排序那里写错了,多此一举。。。都怪以前的qsort,使我现在都快不敢直接判断了。。。

思路是先找出所有点,求出相同直线的个数sum,根据n*(n - 1)/2=sum,求出n;借助队友的思路;

ac代码:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
typedef long long LL;
int tp;
struct Point{
double x, y;
Point(){ }
Point(double x, double y){
this->x = x;
this->y = y;
}
};
Point point[];
struct Node{
double k, b;
Node(double k,double b){
this->k = k;
this->b = b;
}
Node(){ }
bool operator < (const Node &a) const{
if(k != a.k){//直接比就可以。。。
return k < a.k;
}
else//
return b < a.b;
}
};
Node dt[];
Node operator + (Point a,Point b){
double k, t;
k = (a.y - b.y) / (a.x - b.x);
t = a.y - k * a.x;
return Node(k,t);
}
bool operator == (Node a, Node b){
if(abs(a.k - b.k) < 1e-){
if(abs(a.b - b.b) < 1e-){
return true;
}
}
return false;
}
int getn(int a, int b, int c){
double t = b * b - * a * c;
double x = ( -b + sqrt(t) ) / (2.0 * a);
return (int)x;
}
int main(){
int N;
while(~scanf("%d",&N)){
double x, y;
tp = ;
for(int i = ; i < N; i++){
scanf("%lf%lf",&x,&y);
point[i] = Point(x, y);
for(int j = ; j < i; j++){
dt[tp++] = point[i] + point[j];
}
}
if(N == ){
puts("");continue;
}
sort(dt, dt + tp);
int ans = , temp = ;
for(int i = ; i < tp; i++){
if(dt[i] == dt[i - ]){
temp++;
ans = max(ans,temp);
}
else temp = ;
}
ans++;
printf("%d\n", getn(, -, - * ans) );
}
return ;
}

java:

package com.lanqiao.week1;

import java.util.Arrays;
import java.util.Scanner; public class poj1118 {
private static Scanner cin;
private static int MOD = 1000000007;
static{
cin = new Scanner(System.in);
}
static int getN(double a, double b, double c){
double ans = (-b + Math.sqrt(b * b - 4 * a * c)) / (2.0 * a);
return (int)ans;
}
static class Point{
int x, y;
public static Node getNode(Point a, Point b) {
int x = a.x - b.x;
int y = a.y - b.y;
double k = 1.0*y/x;
return new Node(k, a.y - a.x * k);
}
}
static class Node implements Comparable<Node>{
double k, t; public Node(double k, double t) {
super();
this.k = k;
this.t = t;
} public static boolean isEqual(Node a, Node b){
if(Math.abs(a.k - b.k) <= 1e-15 &&
Math.abs(a.t - b.t) <= 1e-15){
return true;
}else
return false;
}
@Override
public int compareTo(Node o) {
if(Math.abs(o.k - k) <= 1e-15){
if(o.t < t){
return 1;
}else{
return -1;
}
}else{
if(o.k < k){
return 1;
}else{
return -1;
}
}
} }
static Point[] points = new Point[710];
static Node[] nodes = new Node[250000];
public static void main(String[] args) {
int N;
N = cin.nextInt();
while(N > 0){ int k = 0;
for(int i = 0; i < N; i++){
points[i] = new Point();
points[i].x = cin.nextInt();
points[i].y = cin.nextInt();
for(int j = 0; j < i; j++){
nodes[k++] = Point.getNode(points[i], points[j]);
}
}
Arrays.sort(nodes, 0, k);
// for(int i = 0; i < k; i++){
// System.out.println((i + 1) + " : " + "k-->" + nodes[i].k + "t-->" + nodes[i].t);
// }
int ans = 1, cnt = 1;
for(int i = 1; i < k; i++){
if(Node.isEqual(nodes[i], nodes[i - 1])){
cnt ++;
ans = Math.max(ans, cnt);
}else{
cnt = 1;
}
}
System.out.println(getN(1, -1, -2*ans));
N = cin.nextInt();
}
}
}

Lining Up(在一条直线上的最大点数目,暴力)的更多相关文章

  1. lintcode 中等题:Max Points on a Line 最多有多少个点在一条直线上

    题目 最多有多少个点在一条直线上 给出二维平面上的n个点,求最多有多少点在同一条直线上. 样例 给出4个点:(1, 2), (3, 6), (0, 0), (1, 3). 一条直线上的点最多有3个. ...

  2. 一条直线上N个线段所覆盖的总长度

    原文:http://blog.csdn.net/bxyill/article/details/8962832 问题描述: 现有一直线,从原点到无穷大. 这条直线上有N个线段.线段可能相交. 问,N个线 ...

  3. LeetCode:149_Max Points on a line | 寻找一条直线上最多点的数量 | Hard

    题目:Max Points on a line Given n points on a 2D plane, find the maximum number of points that lie on ...

  4. lintcode-186-最多有多少个点在一条直线上

    186-最多有多少个点在一条直线上 给出二维平面上的n个点,求最多有多少点在同一条直线上. 样例 给出4个点:(1, 2), (3, 6), (0, 0), (1, 3). 一条直线上的点最多有3个. ...

  5. 149. Max Points on a Line *HARD* 求点集中在一条直线上的最多点数

    Given n points on a 2D plane, find the maximum number of points that lie on the same straight line. ...

  6. [LintCode] 最多有多少个点在一条直线上

    /** * Definition for a point. * struct Point { * int x; * int y; * Point() : x(0), y(0) {} * Point(i ...

  7. objectarx之判断三点是否在一条直线上

    bool CCommonFuntion::IsOnLine(AcGePoint2d& pt1, AcGePoint2d& pt2, AcGePoint2d& pt3){ AcG ...

  8. 两条直线(蓝桥杯)二分枚举+RMQ

    算法提高 两条直线   时间限制:1.0s   内存限制:256.0MB        问题描述 给定平面上n个点. 求两条直线,这两条直线互相垂直,而且它们与x轴的夹角为45度,并且n个点中离这两条 ...

  9. 判断两条直线的位置关系 POJ 1269 Intersecting Lines

    两条直线可能有三种关系:1.共线     2.平行(不包括共线)    3.相交. 那给定两条直线怎么判断他们的位置关系呢.还是用到向量的叉积 例题:POJ 1269 题意:这道题是给定四个点p1, ...

随机推荐

  1. cc150 Chapter 2 | Linked Lists 2.6 Given a circular linked list, implement an algorithm which returns node at the beginning of the loop.

    2.6Given a circular linked list,  implement an algorithm which returns the node at the beginning of ...

  2. java.lang.UnsatisfiedLinkError: no XXX in java.library.path

    其中涉及的测试源码如下: For those who didn't install Javawith default settings, a systematic way for solving JN ...

  3. Mac 下纯lua(三)

    文件处理 直接使用io调用 io.close();文件流关闭 io.flush():如果文件流以bufferd缓存模式处理,输入不会立即存入文件,需要调用本函数 io.input(file):输入 i ...

  4. UVa 1394: And Then There Was One

    设置一个数组Winner记录经典约瑟夫问题中的剩余者即可递归解决该问题. 注: 约瑟夫问题:有编号为0~n-1的n个人,从0号开始报数1,2,3......报到k的杀死,然后从下一个人开始继续报数1, ...

  5. android 获取屏幕尺寸

    文章转载自:http://blog.csdn.net/congqingbin/article/details/7474276// 通过WindowManager获取 DisplayMetrics dm ...

  6. Jquery如何获取控件ID

    l  1.#id     用法: $(”#myDiv”);    返回值  单个元素的组成的集合 说明: 这个就是直接选择html中的id=”myDiv” l  2.Element       用法: ...

  7. Sqlserver系列(三) 小技巧

    (1)取别名 as 省略 as XX= select 'a' as name select 'a' name select name='a' 示例

  8. PHP学习笔记九【数组二】

    <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Frameset//EN" "http://www.w3.org/TR/h ...

  9. Hibernate 关联关系映射实例

    双向多对一/一对多(many-to-one/one-to-many) 例子,多个学生对应一个班级,一个班级对应多个学生: 班级类,Grade.java: public class Grade { pr ...

  10. jsp基础之 jstl

    JSP标准标签库(JSTL)是一个JSP标签集合,它封装了JSP应用的通用核心功能. JSTL支持通用的.结构化的任务,比如迭代,条件判断,XML文档操作,国际化标签,SQL标签. 除了这些,它还提供 ...