算出来每个数被计算答案的期望次数就可以

考虑这个次数,我们可以把一次合并反过来看,变成把一个数+1然后再复制一个

记f[i][j]为一共n个数时第j个数的期望次数,就可以得到期望的递推公式,最后拿f[N]乘一乘就行了

要注意每一位的期望次数是不一样的..不存在什么中间的次数一样之类的...

 #include<bits/stdc++.h>
#define pa pair<int,int>
#define lowb(x) ((x)&(-(x)))
#define REP(i,n0,n) for(i=n0;i<=n;i++)
#define PER(i,n0,n) for(i=n;i>=n0;i--)
#define MAX(a,b) ((a>b)?a:b)
#define MIN(a,b) ((a<b)?a:b)
#define CLR(a,x) memset(a,x,sizeof(a))
#define rei register int
using namespace std;
typedef long long ll;
const int maxn=; inline ll rd(){
ll x=;char c=getchar();int neg=;
while(c<''||c>''){if(c=='-') neg=-;c=getchar();}
while(c>=''&&c<='') x=x*+c-'',c=getchar();
return x*neg;
} int N,a[maxn];
double f[][maxn]; int main(){
//freopen(".in","r",stdin);
rei i,j,k;
N=rd();
for(i=;i<=N;i++) a[i]=rd(); if(N<=){
printf("%.5lf",1.0*(a[]+a[]));
return ;
}
f[][]=f[][]=;
bool b=;
for(i=;i<=N;i++){
f[b][]=((f[b^][]+)+f[b^][]*(i-))/(i-);
for(j=;j<i;j++){
f[b][j]=((f[b^][j-]+)+(f[b^][j]+)+(f[b^][j-])*(j-)+(f[b^][j])*(i-j-))/(i-);
// printf("%d %d %lf\n",i,j,f[b][j]);
}
f[b][i]=(f[b^][i-]*(i-)+f[b^][i-]+)/(i-);
// for(j=1;j<=i;j++) printf("%d %d %lf\n",i,j,f[b][j]);
// f[b][i]=((f[b^1][i])*(N-2))/(N-1);
b^=;
}double ans=;
for(i=;i<=N;i++){
ans+=f[b^][i]*a[i];
}
printf("%.5lf\n",ans);
return ;
}

suoi16 随机合并试卷 (dp)的更多相关文章

  1. [算法]PHP随机合并数组并保持原排序

    场景 原有帖子列表A,现需在A中推广新业务B,则需要在A列表中1:1混合B的数据,随机混合,但需保持A和B两列表原来的数据排序.具体参考下面示例的效果. 原理 获知总共元素数量N: for循环N次,取 ...

  2. UESTC 886 方老师金币堆 --合并石子DP

    环状合并石子问题. 环状无非是第n个要和第1个相邻.可以复制该行石子到原来那行的右边即可达到目的. 定义:dp[i][j]代表从第i堆合并至第j堆所要消耗的最小体力. 转移方程:dp[i][j]=mi ...

  3. 石子合并 区间DP (经典)

    http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1021 设sum[i][j]为从第i为开始,长度为j的区间的值得和.dp[ ...

  4. 洛谷P1880 石子合并(环形石子合并 区间DP)

    题目描述 在一个圆形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分. 试设计出1个算法,计算出将N堆石子合并成1 ...

  5. LOJ #2537. 「PKUWC 2018」Minimax (线段树合并 优化dp)

    题意 小 \(C\) 有一棵 \(n\) 个结点的有根树,根是 \(1\) 号结点,且每个结点最多有两个子结点. 定义结点 \(x\) 的权值为: 1.若 \(x\) 没有子结点,那么它的权值会在输入 ...

  6. LOJ #2540. 「PKUWC 2018」随机算法(概率dp)

    题意 LOJ #2540. 「PKUWC 2018」随机算法 题解 朴素的就是 \(O(n3^n)\) dp 写了一下有 \(50pts\) ... 大概就是每个点有三个状态 , 考虑了但不在独立集中 ...

  7. 洛谷 P1880 [NOI1995] 石子合并(区间DP)

    传送门 https://www.cnblogs.com/violet-acmer/p/9852294.html 题解: 这道题是石子合并问题稍微升级版 这道题和经典石子合并问题的不同在于,经典的石子合 ...

  8. HRBUST - 1818 石子合并 区间dp入门

    有点理解了进阶指南上说的”阶段,状态和决策“ /* 区间dp的基础题: 以区间长度[2,n]为阶段,枚举该长度的区间,状态dp[l][r]表示合并区间[l,r]的最小费用 状态转移方程dp[l][r] ...

  9. 石子合并 区间dp模板

    题意:中文题 Description 在操场上沿一直线排列着 n堆石子.现要将石子有次序地合并成一堆.规定每次只能选相邻的两堆石子合并成新的一堆, 并将新的一堆石子数记为该次合并的得分.允许在第一次合 ...

随机推荐

  1. 大数据入门第二十二天——spark(三)自定义分区、排序与查找

    一.自定义分区 1.概述 默认的是Hash的分区策略,这点和Hadoop是类似的,具体的分区介绍,参见:https://blog.csdn.net/high2011/article/details/6 ...

  2. Git中使用amend解决提交冲突

    问题描述       场景:当你提交的时候,发现跟要合并的流有冲突,你需要解决完冲突再次提交. 如果在SVN时代,你可以直接在本地解决完冲突再提交就可以了,因为SVN会把正确的代码先提交到服务器,至于 ...

  3. [清华集训2015 Day1]主旋律-[状压dp+容斥]

    Description Solution f[i]表示状态i所代表的点构成的强连通图方案数. g[i]表示状态i所代表的的点形成奇数个强连通图的方案数-偶数个强连通图的方案数. g是用来容斥的. 先用 ...

  4. Nuxt.js + koa2 入门

    1. nuxt项目初始化 下面是使用 koa 模板方法初始化一个项目,使用该方法需要将 nuxt 的版本降至1.4.2: 官方 https://zh.nuxtjs.org/guide/installa ...

  5. 手撸orm

    ORM简介 ORM即Object Relational Mapping,全称对象关系映射.当我们需要对数据库进行操作时,势必需要通过连接数据.调用sql语句.执行sql语句等操作,ORM将数据库中的表 ...

  6. 本地navicat远程连接到云服务器数据库

    本来没有开启秘钥的远程服务器端数据库连接非常方便,就在新建连接上填入数据就ok了,但是开启SSH秘钥后的服务器连接有一个大坑,下面来详细讲讲. 其实开启了秘钥,在新建连接下,先选择SSH方式登录到远程 ...

  7. CSS快速入门-前端布局2(唯品会1)

    上一篇我模仿了抽屉网站,这一节我来对唯品会主页进行模仿. 我觉得写一个主页大概思路如下: 1.确定整体布局方式:(html框架布局) 2.针对每一块进行细化,尽量做到模块化.(css) 3.加上特效效 ...

  8. JavaScript快速入门-ECMAScript本地对象(String)

    一.String对象 String对象和python中的字符串一样,也有很多方法,这些方法大概分为以下种类: 1.索引和查找 1.charAt()   返回指定位置的字符. 2.charCodeAt( ...

  9. 关于Java开发一职的经验

    本人为大四软件工程学生,由于准备不充分也没有前人指点,去年10月份才赶上秋招节奏,然后签下了一家比较起来还行的公司.所以不太期望大家有求职意愿但苦于不知作何准备,所以特列以下知识点检索供大家查阅.如果 ...

  10. Java内存区域的划分和异常

    Java内存区域的划分和异常   运行时数据区域 JVM在运行Java程序时候会将内存划分为若干个不同的数据区域. 打开百度App,看更多美图 程序计数器 线程私有.可看作是当前线程所执行的字节码的行 ...