已知$x\ge0,x^2+(y-2)^2=1,W=\dfrac{3x^2+2\sqrt{3}xy+5y^2}{x^2+y^2}$,求$W$的最值。


提示:
$x\ne0$时,设$t=\dfrac{y}{x}$由图知道$t\ge\sqrt{3},W=5+\dfrac{2\sqrt{3}t-2}{1+t^2}\in(5,6]$
$x=0$时,显然$W=5$,故$W\in[5,6]$

MT【173】齐次消元单变量的更多相关文章

  1. HDU4418:Time travel(高斯消元+期望)

    传送门 题意 一个人在数轴上来回走,以pi的概率走i步i∈[1, m],给定n(数轴长度),m,e(终点),s(起点),d(方向),求从s走到e经过的点数期望 分析 设E[x]是人从x走到e经过点数的 ...

  2. 高斯消元和高斯约旦消元 Gauss(-Jordan) Elimination

    高斯消元法,是线性代数中的一个算法,可用来求解线性方程组,并可以求出矩阵的秩,以及求出可逆方阵的逆矩阵. 在讲算法前先介绍些概念 矩阵的初等变换 矩阵的初等变换又分为矩阵的初等行变换和矩阵的初等列变换 ...

  3. 单(single):换根dp,表达式分析,高斯消元

    虽说这题看大家都改得好快啊,但是为什么我感觉这题挺难.(我好菜啊) 所以不管怎么说那群切掉这题的大佬是不会看这篇博客的所以我要开始自嗨了. 这题,明显是树dp啊.只不过出题人想看你发疯,询问二合一了而 ...

  4. 洛谷P3389 高斯消元 / 高斯消元+线性基学习笔记

    高斯消元 其实开始只是想搞下线性基,,,后来发现线性基和高斯消元的关系挺密切就一块儿在这儿写了好了QwQ 先港高斯消元趴? 这个算法并不难理解啊?就会矩阵运算就过去了鸭,,, 算了都专门为此写个题解还 ...

  5. 高斯消元_HihoCoderOffer6_03

    题目3 : 图像算子 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 在图像处理的技术中,经常会用到算子与图像进行卷积运算,从而达到平滑图像或是查找边界的效果. 假设原图 ...

  6. *POJ 1222 高斯消元

    EXTENDED LIGHTS OUT Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 9612   Accepted: 62 ...

  7. ACdrea 1217---Cracking' RSA(高斯消元)

    ACdrea  1217---高斯消元 Description The following problem is somehow related to the final stage of many ...

  8. hdu 5755(高斯消元——模线性方程组模板)

    PS. 看了大神的题解,发现确实可以用m个未知数的高斯消元做.因为确定了第一行的情况,之后所有行的情况都可以根据第一行推. 这样复杂度直接变成O(m*m*m) 知道了是高斯消元后,其实只要稍加处理,就 ...

  9. BZOJ 3143 HNOI2013 游走 高斯消元 期望

    这道题是我第一次使用高斯消元解决期望类的问题,首发A了,感觉爽爽的.... 不过笔者在做完后发现了一些问题,在原文的后面进行了说明. 中文题目,就不翻大意了,直接给原题: 一个无向连通图,顶点从1编号 ...

随机推荐

  1. JQuery radio单选框应用

    转载:JQuery判断radio(单选框)是否选中和获取选中值方法总结 一.利用获取选中值判断选中 直接上代码,别忘记引用JQuery包 复制代码 代码如下: < !DOCTYPE html P ...

  2. group by having 和where区别联系

    原文参考:http://www.51ou.com/browse/msyql/43081.html having 和 where 参考 http://blog.csdn.net/yexudengzhid ...

  3. 20155338课程设计个人报告——基于ARM实验箱的Android交友软件的设计与实现

    课程设计个人报告--基于ARM实验箱的Android交友软件的设计与实现 个人贡献 实验环境的搭建 代码调试 在电脑上成功运行 研究程序代码撰写小组报告 一.实验环境 1.Eclipse软件开发环境: ...

  4. [2016北京集训试题15]cot-[分块]

    Description Solution 如图,假如我们知道了以任何一个点为顶点的135-180度的前缀和和90-180度的前缀和,我们就可以搞出三角形的面积. 差分.add[i][j]和dev[i] ...

  5. 汇编 ADD指令

    知识点: 加法汇编指令ADD 一.加法指令 ADD(Addition) 格式 格式: ADD A,B //A=A+B; 功能: 两数相加 . OPRD1为任一通用寄存器或存储器操作数,可以是任意一个 ...

  6. 使用 Vue.js 2.0+ Vue-resource 模仿百度搜索框

    使用 Vue.js 2.0 模仿百度搜索框 <!DOCTYPE html> <html> <head> <meta charset="utf-8&q ...

  7. 设计模式 笔记 策略模式 Strategy

    //---------------------------15/04/28---------------------------- //Strategy 策略模式----对象行为型模式 /* 1:意图 ...

  8. C# List left join

    public class Test1 { public int ID { get; set; } public string Name { get; set; } } public class Tes ...

  9. 关于最近996.icu的一点感想

    最近这个996.ICU的话题讨论的火热,特别是一些业界大佬有直言不讳的说就是要996,有的弄些鸡汤文把996说成年轻人就该这样的.作为一个普通的码农,实在是看不下去了,在这里说些自己的看法,希望年轻人 ...

  10. LevelDB原理解析

    LevelDb有如下一些特点: 首先,LevelDb是一个持久化存储的KV系统,和Redis这种内存型的KV系统不同,LevelDb不会像Redis一样狂吃内存,而是将大部分数据存储到磁盘上. 其次, ...