【刷题】BZOJ 2287 【POJ Challenge】消失之物
Description
ftiasch 有 N 个物品, 体积分别是 W1, W2, ..., WN。 由于她的疏忽, 第 i 个物品丢失了。 “要使用剩下的 N - 1 物品装满容积为 x 的背包,有几种方法呢?” -- 这是经典的问题了。她把答案记为 Count(i, x) ,想要得到所有1 <= i <= N, 1 <= x <= M的 Count(i, x) 表格。

Input
第1行:两个整数 N (1 ≤ N ≤ 2 × 103) 和 M (1 ≤ M ≤ 2 × 103),物品的数量和最大的容积。
第2行: N 个整数 W1, W2, ..., WN, 物品的体积。
Output
一个 N × M 的矩阵, Count(i, x) 的末位数字。
Sample Input
3 2
1 1 2
Sample Output
11
11
21
HINT
如果物品3丢失的话,只有一种方法装满容量是2的背包,即选择物品1和物品2。
Solution
首先一点,背包物品的转移顺序对答案是没有影响的
考虑二分,\(solve(l,r)\) 代表此时用 \([1,l)\) 和 \((r,n]\) 的物品将背包处理好了,需
要求 \(i\in[l,r]\) 的答案
将 \([l,r]\) 分为两段,如果要处理 \([l,mid]\) ,就用 \((mid,r]\) 的物品更新当前背包;处理 \((mid,r]\) ,就用 \([l,mid]\) 的物品去更新当前背包
\(l=r\) 时,当前背包就是去掉物品 \(l\) 的答案了
#include<bits/stdc++.h>
#define ui unsigned int
#define ll long long
#define db double
#define ld long double
#define ull unsigned long long
const int MAXN=2000+10;
int n,m,w[MAXN],f[20][MAXN];
template<typename T> inline void read(T &x)
{
T data=0,w=1;
char ch=0;
while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
if(ch=='-')w=-1,ch=getchar();
while(ch>='0'&&ch<='9')data=((T)data<<3)+((T)data<<1)+(ch^'0'),ch=getchar();
x=data*w;
}
template<typename T> inline void write(T x,char ch='\0')
{
if(x<0)putchar('-'),x=-x;
if(x>9)write(x/10);
putchar(x%10+'0');
if(ch!='\0')putchar(ch);
}
template<typename T> inline void chkmin(T &x,T y){x=(y<x?y:x);}
template<typename T> inline void chkmax(T &x,T y){x=(y>x?y:x);}
template<typename T> inline T min(T x,T y){return x<y?x:y;}
template<typename T> inline T max(T x,T y){return x>y?x:y;}
inline void solve(int dep,int l,int r)
{
if(l==r)
{
for(register int i=1;i<=m;++i)write(f[dep][i]%10);puts("");
return ;
}
int Mid=(l+r)>>1;
for(register int i=0;i<=m;++i)f[dep+1][i]=f[dep][i];
for(register int i=Mid+1;i<=r;++i)
for(register int j=m;j>=w[i];--j)(f[dep+1][j]+=f[dep+1][j-w[i]])%=10;
solve(dep+1,l,Mid);
for(register int i=0;i<=m;++i)f[dep+1][i]=f[dep][i];
for(register int i=l;i<=Mid;++i)
for(register int j=m;j>=w[i];--j)(f[dep+1][j]+=f[dep+1][j-w[i]])%=10;
solve(dep+1,Mid+1,r);
}
int main()
{
read(n);read(m);
for(register int i=1;i<=n;++i)read(w[i]);
f[0][0]=1;solve(0,1,n);
return 0;
}
【刷题】BZOJ 2287 【POJ Challenge】消失之物的更多相关文章
- BZOJ.2287.[POJ Challenge]消失之物(退背包)
BZOJ 洛谷 退背包.和原DP的递推一样,再减去一次递推就行了. f[i][j] = f[i-1][j-w[i]] + f[i-1][j] f[i-1][j] = f[i][j] - f[i-1][ ...
- [bzoj2287][poj Challenge]消失之物_背包dp_容斥原理
消失之物 bzoj-2287 Poj Challenge 题目大意:给定$n$个物品,第$i$个物品的权值为$W_i$.记$Count(x,i)$为第$i$个物品不允许使用的情况下拿到重量为$x$的方 ...
- POJ Challenge消失之物
Description ftiasch 有 N 个物品, 体积分别是 W1, W2, ..., WN. 由于她的疏忽, 第 i 个物品丢失了. "要使用剩下的 N - 1 物品装满容积为 x ...
- bzoj2287:[POJ Challenge]消失之物
思路:首先先背包预处理出f[x]表示所有物品背出体积为x的方案数.然后统计答案,利用dp. C[i][j]表示不用物品i,组成体积j的方案数. 转移公式:C[i][j]=f[j]-C[i][j-w[i ...
- bzoj2287 [POJ Challenge]消失之物
题目链接 少打个else 调半天QAQ 重点在47行,比较妙 #include<algorithm> #include<iostream> #include<cstdli ...
- 【bzoj2287】[POJ Challenge]消失之物 背包dp
题目描述 ftiasch 有 N 个物品, 体积分别是 W1, W2, ..., WN. 由于她的疏忽, 第 i 个物品丢失了. “要使用剩下的 N - 1 物品装满容积为 x 的背包,有几种方法呢? ...
- 【bozj2287】【[POJ Challenge]消失之物】维护多值递推
(上不了p站我要死了) Description ftiasch 有 N 个物品, 体积分别是 W1, W2, -, WN. 由于她的疏忽, 第 i 个物品丢失了. "要使用剩下的 N - 1 ...
- [BZOJ 2287/POJ openjudge1009/Luogu P4141] 消失之物
题面: 传送门:http://poj.openjudge.cn/practice/1009/ Solution DP+DP 首先,我们可以很轻松地求出所有物品都要的情况下的选择方案数,一个简单的满背包 ...
- BZOJ 2295: [POJ Challenge]我爱你啊
由于是子序列,那么难度就在于读入 #include<cstdio> #include<algorithm> #include<cstring> using name ...
- BZOJ 2287: 【POJ Challenge】消失之物( 背包dp )
虽然A掉了但是时间感人啊.... f( x, k ) 表示使用前 x 种填满容量为 k 的背包的方案数, g( x , k ) 表示使用后 x 种填满容量为 k 的背包的方案数. 丢了第 i 个, 要 ...
随机推荐
- Scala--集合
一.主要的集合特质 Seq有先后顺序的序列,如数组列表.IndexedSeq通过下标快速的访问元素.不可变:Vector, Range, List 可变:ArrayBuffer, LinkedList ...
- 大数据入门第二十三天——SparkSQL(二)结合hive
一.SparkSQL结合hive 1.首先通过官网查看与hive匹配的版本 这里可以看到是1.2.1 2.与hive结合 spark可以通过读取hive的元数据来兼容hive,读取hive的表数据,然 ...
- 【转】从Shell脚本内部将所有标准输出及标准错误显示在屏幕并同时写入文件的方法
如果全部都要重定向的话每一条命令后面>>并不方便,可以这么做.在开头就声明 exec 1>>$log_file表示将脚本中所有的正确输出全部追加到$log_file,错误信息会 ...
- CS190.1x-ML_lab4_ctr_student
这次lab主要主要是研究click-through rate (CTR).数据集来自于Kaggle的Criteo Labs dataset.相关ipynb文件见我github. 作业分成5个部分:on ...
- nginx 跳转
nginx 跳转 一.需求:当需要在别的机访问本机房的服务器问题. 虚拟主机头配置 server { listen ; server_name test.zlx.com; location / { i ...
- Scrapy持久化存储
基于终端指令的持久化存储 保证爬虫文件的parse方法中有可迭代类型对象(通常为列表or字典)的返回,该返回值可以通过终端指令的形式写入指定格式的文件中进行持久化操作; 执行输出指定格式进行存储:将爬 ...
- zabbix监控docker容器状态
前言:前段时间在部署zabbix,有个需求就是需要监控容器的状态 也就是cpu 内存 io的占用,于是就自己写了一个脚本,以及模板,在这里分享一下 嘿嘿 : ) 废话我也就不多说,直接开始 首选,za ...
- 在Ubuntu虚拟机上安装DVWA
学习资料来源:https://www.neddos.tech/?p=107 最后更新时间: 190122·17:41 1> 什么是DVWA(Damn Vulnerable Web Applica ...
- 1092. To Buy or Not to Buy (20)-map
给出两个字符串,判断第二个字符串中的字符是否都出现在第一个中. 是,则输出Yes,以及多余的字符的个数. 否,则输出No,以及缺失的个数. #include <iostream> #inc ...
- 使用HTTP协议向服务器传参的方式及django中获取参数的方式
使用HTTP协议向服务器传参的四种方式 URL路径携带参数,形如/weather/beijing/2018; 查询字符串(query string),形如key1=value1&key2=va ...