最长回文子串问题-Manacher算法
转:http://blog.csdn.net/dyx404514/article/details/42061017
Manacher算法
算法总结第三弹 manacher算法,前面讲了两个字符串相算法——kmp和拓展kmp,这次来还是来总结一个字符串算法,manacher算法,我习惯叫他 “马拉车”算法。
相对于前面介绍的两个算法,Manacher算法的应用范围要狭窄得多,但是它的思想和拓展kmp算法有很多共通支出,所以在这里介绍一下。Manacher算法是查找一个字符串的最长回文子串的线性算法。
在介绍算法之前,首先介绍一下什么是回文串,所谓回文串,简单来说就是正着读和反着读都是一样的字符串,比如abba,noon等等,一个字符串的最长回文子串即为这个字符串的子串中,是回文串的最长的那个。
计算字符串的最长回文字串最简单的算法就是枚举该字符串的每一个子串,并且判断这个子串是否为回文串,这个算法的时间复杂度为O(n^3)的,显然无法令人满意,稍微优化的一个算法是枚举回文串的中点,这里要分为两种情况,一种是回文串长度是奇数的情况,另一种是回文串长度是偶数的情况,枚举中点再判断是否是回文串,这样能把算法的时间复杂度降为O(n^2),但是当n比较大的时候仍然无法令人满意,Manacher算法可以在线性时间复杂度内求出一个字符串的最长回文字串,达到了理论上的下界。
1.Manacher算法原理与实现
下面介绍Manacher算法的原理与步骤。
首先,Manacher算法提供了一种巧妙地办法,将长度为奇数的回文串和长度为偶数的回文串一起考虑,具体做法是,在原字符串的每个相邻两个字符中间插入一个分隔符,同时在首尾也要添加一个分隔符,分隔符的要求是不在原串中出现,一般情况下可以用#号。下面举一个例子:
(1)Len数组简介与性质
Manacher算法用一个辅助数组Len[i]表示以字符T[i]为中心的最长回文字串的最右字符到T[i]的长度,比如以T[i]为中心的最长回文字串是T[l,r],那么Len[i]=r-i+1。
对于上面的例子,可以得出Len[i]数组为:
Len数组有一个性质,那就是Len[i]-1就是该回文子串在原字符串S中的长度,至于证明,首先在转换得到的字符串T中,所有的回文字串的长度都为奇数,那么对于以T[i]为中心的最长回文字串,其长度就为2*Len[i]-1,经过观察可知,T中所有的回文子串,其中分隔符的数量一定比其他字符的数量多1,也就是有Len[i]个分隔符,剩下Len[i]-1个字符来自原字符串,所以该回文串在原字符串中的长度就为Len[i]-1。
有了这个性质,那么原问题就转化为求所有的Len[i]。下面介绍如何在线性时间复杂度内求出所有的Len。
(2)Len数组的计算
首先从左往右依次计算Len[i],当计算Len[i]时,Len[j](0<=j<i)已经计算完毕。设P为之前计算中最长回文子串的右端点的最大值,并且设取得这个最大值的位置为po,分两种情况:
第一种情况:i<=P
那么找到i相对于po的对称位置,设为j,那么如果Len[j]<P-i,如下图:
那么说明以j为中心的回文串一定在以po为中心的回文串的内部,且j和i关于位置po对称,由回文串的定义可知,一个回文串反过来还是一个回文串,所以以i为中心的回文串的长度至少和以j为中心的回文串一样,即Len[i]>=Len[j]。因为Len[j]<P-i,所以说i+Len[j]<P。由对称性可知Len[i]=Len[j]。
如果Len[j]>=P-i,由对称性,说明以i为中心的回文串可能会延伸到P之外,而大于P的部分我们还没有进行匹配,所以要从P+1位置开始一个一个进行匹配,直到发生失配,从而更新P和对应的po以及Len[i]。
第二种情况: i>P
如果i比P还要大,说明对于中点为i的回文串还一点都没有匹配,这个时候,就只能老老实实地一个一个匹配了,匹配完成后要更新P的位置和对应的po以及Len[i]。
2.时间复杂度分析
Manacher算法的时间复杂度分析和Z算法类似,因为算法只有遇到还没有匹配的位置时才进行匹配,已经匹配过的位置不再进行匹配,所以对于T字符串中的每一个位置,只进行一次匹配,所以Manacher算法的总体时间复杂度为O(n),其中n为T字符串的长度,由于T的长度事实上是S的两倍,所以时间复杂度依然是线性的。
最长回文子串问题-Manacher算法的更多相关文章
- Leetcode 5. Longest Palindromic Substring(最长回文子串, Manacher算法)
Leetcode 5. Longest Palindromic Substring(最长回文子串, Manacher算法) Given a string s, find the longest pal ...
- 最长回文子串的Manacher算法
对于一个比较长的字符串,O(n^2)的时间复杂度是难以接受的.Can we do better? 先来看看解法2存在的缺陷. 1) 由于回文串长度的奇偶性造成了不同性质的对称轴位置,解法2要对两种情况 ...
- 51nod1089(最长回文子串之manacher算法)
题目链接: https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1089 题意:中文题诶~ 思路: 我前面做的那道回文子串的题 ...
- 求最长回文子串:Manacher算法
主要学习自:http://articles.leetcode.com/2011/11/longest-palindromic-substring-part-ii.html 问题描述:回文字符串就是左右 ...
- 最长回文子串(Manacher算法)
回文字符串,想必大家不会不熟悉吧? 回文串会求的吧?暴力一遍O(n^2)很简单,但当字符长度很长时便会TLE,简单,hash+二分搞定,其复杂度约为O(nlogn), 而Manacher算法能够在线性 ...
- 计算字符串的最长回文子串 :Manacher算法介绍
转自: http://www.open-open.com/lib/view/open1419150233417.html Manacher算法 在介绍算法之前,首先介绍一下什么是回文串,所谓回文串,简 ...
- 51Nod 1089 最长回文子串 V2 —— Manacher算法
题目链接:https://vjudge.net/problem/51Nod-1089 1089 最长回文子串 V2(Manacher算法) 基准时间限制:1 秒 空间限制:131072 KB 分值: ...
- 51 Nod 1089 最长回文子串(Manacher算法)
1089 最长回文子串 V2(Manacher算法) 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 收藏 关注 回文串是指aba.abba.cccbccc.aaa ...
- hihocoder #1032 : 最长回文子串【 manacher算法实现 】
#1032 : 最长回文子串 时间限制:1000ms 单点时限:1000ms 内存限制:64MB 描述 小Hi和小Ho是一对好朋友,出生在信息化社会的他们对编程产生了莫大的兴趣,他们约定好互相帮助,在 ...
- 图解最长回文子串「Manacher 算法」,基础思路感性上的解析
问题描述: 给你一个字符串 s,找到 s 中最长的回文子串. 链接:https://leetcode-cn.com/problems/longest-palindromic-substring 「Ma ...
随机推荐
- web api token验证理解
最近一直在学习web api authentication,以Jwt为例,可以这样理解,token是身份证,用户名和密码是户口本,身份证是有有效期的(jwt 有过期时间),且携带方便(自己带有所有信息 ...
- VS 远程调试 Azure Web App
如果能够远程调试部署在 Azure 上的 Web App,将会极大的提高我们修复 bug 的效率.Visual Studio 一贯以功能强大.好用著称,当然可以通吃基于 Azure 应用的创建.发布和 ...
- python 游戏(井字棋)
1. 游戏思路和流程图 实现功能,现实生活中的井字棋玩法 游戏流程图 2. 使用模块和游戏提示 import random def game_info(): print('欢迎来到井字棋游戏') pr ...
- [T-ARA][결혼 하지마][不要结婚]
歌词来源:http://music.163.com/#/song?id=27808773 作曲 : 二段横踢 [作曲 : 二段横踢] 作词 : 二段横踢 [作词 : 二段横踢] Hey anybody ...
- [2017BUAA软工助教]剩余个人作业与deadline
软件工程剩余作业与deadline 标签(空格分隔): 软件工程 一.个人阅读作业+总结 对软件工程的学习做一个总结. 阅读下列关于软件开发本质和开发方法的博客/文章,结合自己在个人项目/结对编程/团 ...
- java计算器实验报告
一.实验目的 1.熟悉java图形用户界面的设计原理和程序结构 2.能设计复核问题要求的图形用户界面程序 3.熟悉java awt和swing的组合 4.掌握常用组建的事件借口 5.会应用awt和sw ...
- Leetcode——30.与所有单词相关联的字串【##】
@author: ZZQ @software: PyCharm @file: leetcode30_findSubstring.py @time: 2018/11/20 19:14 题目要求: 给定一 ...
- beta3
吴晓晖(组长) 过去两天完成了哪些任务 一些细节的debug,部分优化,算法中有关记录的部分 展示GitHub当日代码/文档签入记录 接下来的计划 推荐算法 还剩下哪些任务 组员:刘帅珍 过去两天完成 ...
- Beta阶段冲刺五
Beta阶段冲刺五 Task1:团队TSP 团队任务 预估时间 实际时间 完成日期 新增其他学院的爬虫 180 130 11.30 新增其他学院的数据库字段修改 180 160 12.1 新增其他学院 ...
- Maven 学习笔记——将普通的Java项目转换成Maven项目(3)
将一个普通的java项目转换成Maven项目并不是一个很大的任务,仅仅只需要下面的几步就能将转换成功.下面我是用一个简单的Selenium测试小demon作为例子来说的. 移调项目中所有关联的Libr ...